EVALUATION OF VECTOR COASTLINE FEATURES EXTRACTED FROM ‘STRUCTURE FROM MOTION’-DERIVED ELEVATION DATA

Author(s):  
NICOLE KINSMAN ◽  
ANN GIBBS ◽  
MATT NOLAN
Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 26
Author(s):  
Brett Lawrence

Small unmanned aerial systems (sUAS) and relatively new photogrammetry software solutions are creating opportunities for forest managers to perform spatial analysis more efficiently and cost-effectively. This study aims to identify a method for leveraging these technologies to analyze vertical forest structure of red-cockaded woodpecker habitat in Montgomery County, Texas. Traditional sampling methods would require numerous hours of ground surveying and data collection using various measuring techniques. Structure from Motion (SfM), a photogrammetric method for creating 3-D structure from 2-D images, provides an alternative to relatively expensive LIDAR sensing technologies and can accurately model the high level of complexity found within our study area’s vertical structure. DroneDeploy, a photogrammetry processing app service, was used to post-process and create a point cloud, which was later further processed into a Canopy Height Model (CHM). Using supervised, object-based classification and comparing multiple classifier algorithms, classifications maps were generated with a best overall accuracy of 84.8% using Support Vector Machine in ArcGIS Pro software. Appropriately sized training sample datasets, correctly processed elevation data, and proper image segmentation were among the major factors impacting classification accuracy during the numerous classification iterations performed.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3205 ◽  
Author(s):  
Jairo R. Escobar Villanueva ◽  
Luis Iglesias Martínez ◽  
Jhonny I. Pérez Montiel

Geospatial products, such as digital elevation models (DEMs), are important topographic tools for tackling local flood studies. This study investigates the contribution of LiDAR elevation data in DEM generation based on fixed-wing unmanned aerial vehicle (UAV) imaging for flood applications. More specifically, it assesses the accuracy of UAV-derived DEMs using the proposed LiDAR-derived control point (LCP) method in a Structure-from-Motion photogrammetry processing. Also, the flood estimates (volume and area) of the UAV terrain products are compared with a LiDAR-based reference. The applied LCP-georeferencing method achieves an accuracy comparable with other studies. In addition, it has the advantage of using semi-automatic terrain data classification and is readily applicable in flood studies. Lastly, it proves the complementarity between LiDAR and UAV photogrammetry at the local level.


2020 ◽  
Vol 52 ◽  
pp. 55-61
Author(s):  
Ettore Potente ◽  
Cosimo Cagnazzo ◽  
Alessandro Deodati ◽  
Giuseppe Mastronuzzi

2017 ◽  
Author(s):  
Indra Riyanto ◽  
Lestari Margatama

The recent degradation of environment quality becomes the prime cause of the recent occurrence of natural disasters. It also contributes in the increase of the area that is prone to natural disasters. Flood history data in Jakarta shows that flood occurred mainly during rainy season around January – February each year, but the flood area varies each year. This research is intended to map the flood potential area in DKI Jakarta by segmenting the Digital Elevation Model data. The data used in this research is contour data obtained from DPP–DKI with the resolution of 1 m. The data processing involved in this research is extracting the surface elevation data from the DEM, overlaying the river map of Jakarta with the elevation data. Subsequently, the data is then segmented using watershed segmentation method. The concept of watersheds is based on visualizing an image in three dimensions: two spatial coordinates versus gray levels, in which there are two specific points; that are points belonging to a regional minimum and points at which a drop of water, if placed at the location of any of those points, would fall with certainty to a single minimum. For a particular regional minimum, the set of points satisfying the latter condition is called the catchments basin or watershed of that minimum, while the points satisfying condition form more than one minima are termed divide lines or watershed lines. The objective of this segmentation is to find the watershed lines of the DEM image. The expected result of the research is the flood potential area information, especially along the Ciliwung river in DKI Jakarta.


Sign in / Sign up

Export Citation Format

Share Document