scholarly journals ON SPANNERS OF GEOMETRIC GRAPHS

2009 ◽  
Vol 20 (01) ◽  
pp. 135-149 ◽  
Author(s):  
JOACHIM GUDMUNDSSON ◽  
MICHIEL SMID

Given a connected geometric graph G, we consider the problem of constructing a t-spanner of G having the minimum number of edges. We prove that for every real number t with [Formula: see text], there exists a connected geometric graph G with n vertices, such that every t-spanner of G contains Ω(n1+1/t) edges. This bound almost matches the known upper bound, which states that every connected weighted graph with n vertices contains a t-spanner with O(n1+2/(t-1)) edges. We also prove that the problem of deciding whether a given geometric graph contains a t-spanner with at most K edges is NP-hard. Previously, this NP-hardness result was only known for non-geometric graphs.

10.37236/3025 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Vida Dujmović ◽  
Pat Morin ◽  
Adam Sheffer

We prove tight crossing number inequalities for geometric graphs whose vertex sets are taken from a $d$-dimensional grid of volume $N$ and give applications of these inequalities to counting the number of crossing-free geometric graphs that can be drawn on such grids.In particular, we show that any geometric graph with $m\geq 8N$ edges and with vertices on a 3D integer grid of volume $N$, has $\Omega((m^2/N)\log(m/N))$ crossings. In $d$-dimensions, with $d\ge 4$, this bound becomes $\Omega(m^2/N)$. We provide matching upper bounds for all $d$. Finally, for $d\ge 4$ the upper bound implies that the maximum number of crossing-free geometric graphs with vertices on some $d$-dimensional grid of volume $N$ is $N^{\Theta(N)}$. In 3 dimensions it remains open to improve the trivial bounds, namely, the $2^{\Omega(N)}$ lower bound and the $N^{O(N)}$ upper bound.


2012 ◽  
Vol 21 (6) ◽  
pp. 816-834 ◽  
Author(s):  
ANDREW BEVERIDGE ◽  
ANDRZEJ DUDEK ◽  
ALAN FRIEZE ◽  
TOBIAS MÜLLER

Cops and robbers is a turn-based pursuit game played on a graph G. One robber is pursued by a set of cops. In each round, these agents move between vertices along the edges of the graph. The cop number c(G) denotes the minimum number of cops required to catch the robber in finite time. We study the cop number of geometric graphs. For points x1, . . ., xn ∈ ℝ2, and r ∈ ℝ+, the vertex set of the geometric graph G(x1, . . ., xn; r) is the graph on these n points, with xi, xj adjacent when ∥xi − xj∥ ≤ r. We prove that c(G) ≤ 9 for any connected geometric graph G in ℝ2 and we give an example of a connected geometric graph with c(G) = 3. We improve on our upper bound for random geometric graphs that are sufficiently dense. Let (n,r) denote the probability space of geometric graphs with n vertices chosen uniformly and independently from [0,1]2. For G ∈ (n,r), we show that with high probability (w.h.p.), if r ≥ K1 (log n/n)1/4 then c(G) ≤ 2, and if r ≥ K2(log n/n)1/5 then c(G) = 1, where K1, K2 > 0 are absolute constants. Finally, we provide a lower bound near the connectivity regime of (n,r): if r ≤ K3 log n/ then c(G) > 1 w.h.p., where K3 > 0 is an absolute constant.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
J. Cervantes-Ojeda ◽  
M. Gómez-Fuentes ◽  
D. González-Moreno ◽  
M. Olsen

Arainbowt-coloringof at-connected graphGis an edge coloring such that for any two distinct verticesuandvofGthere are at leasttinternally vertex-disjoint rainbow(u,v)-paths. In this work, we apply a Rank Genetic Algorithm to search for rainbowt-colorings of the family of Moore cages with girth six(t;6)-cages. We found that an upper bound in the number of colors needed to produce a rainbow 4-coloring of a(4;6)-cage is 7, improving the one currently known, which is 13. The computation of the minimum number of colors of a rainbow coloring is known to be NP-Hard and the Rank Genetic Algorithm showed good behavior finding rainbowt-colorings with a small number of colors.


2013 ◽  
Vol Vol. 15 no. 1 (Combinatorics) ◽  
Author(s):  
Luis Barba ◽  
Ruy Fabila-Monroy ◽  
Dolores Lara ◽  
Jesús Leaños ◽  
Cynthia Rodrıguez ◽  
...  

Combinatorics International audience Let f(n,k) be the minimum number of edges that must be removed from some complete geometric graph G on n points, so that there exists a tree on k vertices that is no longer a planar subgraph of G. In this paper we show that ( 1 / 2 )n2 / k-1-n / 2≤f(n,k) ≤2 n(n-2) / k-2. For the case when k=n, we show that 2 ≤f(n,n) ≤3. For the case when k=n and G is a geometric graph on a set of points in convex position, we completely solve the problem and prove that at least three edges must be removed.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950076
Author(s):  
Thomas Fleming ◽  
Joel Foisy

A directed graph [Formula: see text] is intrinsically linked if every embedding of that graph contains a nonsplit link [Formula: see text], where each component of [Formula: see text] is a consistently oriented cycle in [Formula: see text]. A tournament is a directed graph where each pair of vertices is connected by exactly one directed edge. We consider intrinsic linking and knotting in tournaments, and study the minimum number of vertices required for a tournament to have various intrinsic linking or knotting properties. We produce the following bounds: intrinsically linked ([Formula: see text]), intrinsically knotted ([Formula: see text]), intrinsically 3-linked ([Formula: see text]), intrinsically 4-linked ([Formula: see text]), intrinsically 5-linked ([Formula: see text]), intrinsically [Formula: see text]-linked ([Formula: see text]), intrinsically linked with knotted components ([Formula: see text]), and the disjoint linking property ([Formula: see text]). We also introduce the consistency gap, which measures the difference in the order of a graph required for intrinsic [Formula: see text]-linking in tournaments versus undirected graphs. We conjecture the consistency gap to be nondecreasing in [Formula: see text], and provide an upper bound at each [Formula: see text].


10.37236/7159 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Colin McDiarmid ◽  
Dieter Mitsche ◽  
Pawel Prałat

A clique colouring of a graph is a colouring of the vertices such that no maximal clique is monochromatic (ignoring isolated vertices). The least number of colours in such a colouring is the clique chromatic number.  Given $n$ points $\mathbf{x}_1, \ldots,\mathbf{x}_n$ in the plane, and a threshold $r>0$, the corresponding geometric graph has vertex set $\{v_1,\ldots,v_n\}$, and distinct $v_i$ and $v_j$ are adjacent when the Euclidean distance between $\mathbf{x}_i$ and $\mathbf{x}_j$ is at most $r$. We investigate the clique chromatic number of such graphs.We first show that the clique chromatic number is at most 9 for any geometric graph in the plane, and briefly consider geometric graphs in higher dimensions. Then we study the asymptotic behaviour of the clique chromatic number for the random geometric graph $\mathcal{G}$ in the plane, where $n$ random points are independently and uniformly distributed in a suitable square. We see that as $r$ increases from 0, with high probability the clique chromatic number is 1 for very small $r$, then 2 for small $r$, then at least 3 for larger $r$, and finally drops back to 2.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
K. Mageshwaran ◽  
G. Kalaimurugan ◽  
Bussakorn Hammachukiattikul ◽  
Vediyappan Govindan ◽  
Ismail Naci Cangul

An L h , k -labeling of a graph G = V , E is a function f : V ⟶ 0 , ∞ such that the positive difference between labels of the neighbouring vertices is at least h and the positive difference between the vertices separated by a distance 2 is at least k . The difference between the highest and lowest assigned values is the index of an L h , k -labeling. The minimum number for which the graph admits an L h , k -labeling is called the required possible index of L h , k -labeling of G , and it is denoted by λ k h G . In this paper, we obtain an upper bound for the index of the L h , k -labeling for an inverse graph associated with a finite cyclic group, and we also establish the fact that the upper bound is sharp. Finally, we investigate a relation between L h , k -labeling with radio labeling of an inverse graph associated with a finite cyclic group.


Author(s):  
Leigh Marie Braswell ◽  
Tanya Khovanova

This chapter examines the problem of the “Cookie Monster number.” In 2002, Cookie Monster® appeared in the book The Inquisitive Problem Solver by Vaderlind, Guy, and Larson, where the hungry monster wants to empty a set of jars filled with various numbers of cookies. The Cookie Monster number is the minimum number of moves Cookie Monster must use to empty all the jars. The chapter analyzes this problem by first introducing known general algorithms and known bounds for the Cookie Monster number. It then explicitly finds the Cookie Monster number for jars containing cookies in the Fibonacci, Tribonacci, n-nacci, and Super-n-nacci sequences. The chapter also constructs sequences of k jars such that their Cookie Monster numbers are asymptotically rk, where r is any real number, 0 ≤ r ≤ 1.


Author(s):  
Mahboubeh Alizadeh Sanati

The commutator length “” of a group is the least natural number such that every element of the derived subgroup of is a product of commutators. We give an upper bound for when is a -generator nilpotent-by-abelian-by-finite group. Then, we give an upper bound for the commutator length of a soluble-by-finite linear group over that depends only on and the degree of linearity. For such a group , we prove that is less than , where is the minimum number of generators of (upper) triangular subgroup of and is a quadratic polynomial in . Finally we show that if is a soluble-by-finite group of Prüffer rank then , where is a quadratic polynomial in .


2012 ◽  
Vol 22 (03) ◽  
pp. 187-205 ◽  
Author(s):  
MARK DE BERG ◽  
AMIRALI KHOSRAVI

An optimal BSP for a set S of disjoint line segments in the plane is a BSP for S that produces the minimum number of cuts. We study optimal BSPs for three classes of BSPs, which differ in the splitting lines that can be used when partitioning a set of fragments in the recursive partitioning process: free BSPs can use any splitting line, restricted BSPs can only use splitting lines through pairs of fragment endpoints, and auto-partitions can only use splitting lines containing a fragment. We obtain the following two results: • It is NP-hard to decide whether a given set of segments admits an auto-partition that does not make any cuts. • An optimal restricted BSP makes at most 2 times as many cuts as an optimal free BSP for the same set of segments.


Sign in / Sign up

Export Citation Format

Share Document