scholarly journals Subset Synchronization and Careful Synchronization of Binary Finite Automata

2016 ◽  
Vol 27 (05) ◽  
pp. 557-577 ◽  
Author(s):  
Vojtěch Vorel

We present a strongly exponential lower bound that applies both to the subset synchronization threshold for binary deterministic automata and to the careful synchronization threshold for binary partial automata. In the later form, the result finishes the research initiated by Martyugin (2013). Moreover, we show that both the thresholds remain strongly exponential even if restricted to strongly connected binary automata. In addition, we apply our methods to computational complexity. Existence of a subset reset word is known to be PSPACE-complete; we show that this holds even under the restriction to strongly connected binary automata. The results apply also to the corresponding thresholds in two more general settings: D1- and D3-directable nondeterministic automata and composition sequences over finite domains.

Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 338
Author(s):  
Cezar Câmpeanu

Deterministic Finite Cover Automata (DFCA) are compact representations of finite languages. Deterministic Finite Automata with “do not care” symbols and Multiple Entry Deterministic Finite Automata are both compact representations of regular languages. This paper studies the benefits of combining these representations to get even more compact representations of finite languages. DFCAs are extended by accepting either “do not care” symbols or considering multiple entry DFCAs. We study for each of the two models the existence of the minimization or simplification algorithms and their computational complexity, the state complexity of these representations compared with other representations of the same language, and the bounds for state complexity in case we perform a representation transformation. Minimization for both models proves to be NP-hard. A method is presented to transform minimization algorithms for deterministic automata into simplification algorithms applicable to these extended models. DFCAs with “do not care” symbols prove to have comparable state complexity as Nondeterministic Finite Cover Automata. Furthermore, for multiple entry DFCAs, we can have a tight estimate of the state complexity of the transformation into equivalent DFCA.


2018 ◽  
Vol 52 (2-3-4) ◽  
pp. 153-168
Author(s):  
Michal Hospodár ◽  
Galina Jirásková

We study the state complexity of the concatenation operation on regular languages represented by deterministic and alternating finite automata. For deterministic automata, we show that the upper bound m2n − k2n−1 on the state complexity of concatenation can be met by ternary languages, the first of which is accepted by an m-state DFA with k final states, and the second one by an n-state DFA with ℓ final states for arbitrary integers m, n, k, ℓ with 1 ≤ k ≤ m − 1 and 1 ≤ ℓ ≤ n − 1. In the case of k ≤ m − 2, we are able to provide appropriate binary witnesses. In the case of k = m − 1 and ℓ ≥ 2, we provide a lower bound which is smaller than the upper bound just by one. We use our binary witnesses for concatenation on deterministic automata to describe binary languages meeting the upper bound 2m + n + 1 for the concatenation on alternating finite automata. This solves an open problem stated by Fellah et al. [Int. J. Comput. Math. 35 (1990) 117–132].


2021 ◽  
Vol 180 (4) ◽  
pp. 315-331
Author(s):  
Egor Dobronravov ◽  
Nikita Dobronravov ◽  
Alexander Okhotin

Given a two-way finite automaton recognizing a non-empty language, consider the length of the shortest string it accepts, and, for each n ≥ 1, let f(n) be the maximum of these lengths over all n-state automata. It is proved that for n-state two-way finite automata, whether deterministic or nondeterministic, this number is at least Ω(10n/5) and less than (2nn+1), with the lower bound reached over an alphabet of size Θ(n). Furthermore, for deterministic automata and for a fixed alphabet of size m ≥ 1, the length of the shortest string is at least e(1+o(1))mn(log n− log m).


1997 ◽  
Vol 62 (3) ◽  
pp. 708-728 ◽  
Author(s):  
Maria Bonet ◽  
Toniann Pitassi ◽  
Ran Raz

AbstractWe consider small-weight Cutting Planes (CP*) proofs; that is, Cutting Planes (CP) proofs with coefficients up to Poly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP* proofs, for a family of tautologies based on the clique function. Because Resolution is a special case of small-weight CP, our method also gives a new and simpler exponential lower bound for Resolution.We also prove the following two theorems: (1) Tree-like CP* proofs cannot polynomially simulate non-tree-like CP* proofs. (2) Tree-like CP* proofs and Bounded-depth-Frege proofs cannot polynomially simulate each other.Our proofs also work for some generalizations of the CP* proof system. In particular, they work for CP* with a deduction rule, and also for any proof system that allows any formula with small communication complexity, and any set of sound rules of inference.


Sign in / Sign up

Export Citation Format

Share Document