scholarly journals ONE-DIMENSIONAL QUASI-RELATIVISTIC PARTICLE IN THE BOX

2013 ◽  
Vol 25 (08) ◽  
pp. 1350014 ◽  
Author(s):  
KAMIL KALETA ◽  
MATEUSZ KWAŚNICKI ◽  
JACEK MAŁECKI

The eigenvalues and eigenfunctions of the one-dimensional quasi-relativistic Hamiltonian (-ℏ2c2d2/dx2 + m2c4)1/2 + V well (x) (the Klein–Gordon square-root operator with electrostatic potential) with the infinite square well potential V well (x) are studied. Eigenvalues represent energies of a "massive particle in the box" quasi-relativistic model. Approximations to eigenvalues λn are given, uniformly in n, ℏ, m, c and a, with error less than C1ℏca-1 exp (-C2ℏ-1mca)n-1. Here 2a is the width of the potential well. As a consequence, the spectrum is simple and the nth eigenvalue is equal to (nπ/2 - π/8)ℏc/a + O(1/n) as n → ∞. Non-relativistic, zero mass and semi-classical asymptotic expansions are included as special cases. In the final part, some L2 and L∞ properties of eigenfunctions are studied.

2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


2007 ◽  
Vol 56 (2) ◽  
pp. 1041
Author(s):  
Li Mi-Shan ◽  
Tian Qiang

2011 ◽  
Vol 84 (3) ◽  
pp. 037001 ◽  
Author(s):  
Abdelmalek Boumali ◽  
Abdelhakim Hafdallah ◽  
Amina Toumi

1985 ◽  
Vol 33 (2) ◽  
pp. 219-236 ◽  
Author(s):  
Dana Roberts

The general Lie point transformation group and the associated reduced differential equations and similarity forms for the solutions are derived here for the coupled (nonlinear) Vlasov–Maxwell equations in one spatial dimension. The case of one species in a background is shown to admit a larger group than the multi-species case. Previous exact solutions are shown to be special cases of the above solutions, and many of the new solutions are found to constrain the form of the distribution function much more than, for example, the BGK solutions do. The individual generators of the Lie group are used to find the possible subgroups. Finally, a simple physical argument is given to show that the asymptotic solution (t→∞) for a one-species, one-dimensional plasma is one of the general similarity solutions.


2020 ◽  
Vol 98 (10) ◽  
pp. 939-943
Author(s):  
Eduardo López ◽  
Clara Rojas

We present a study of the one-dimensional Klein–Gordon equation by a smooth barrier. The scattering solutions are given in terms of the Whittaker Mκ,μ(x) function. The reflection and transmission coefficients are calculated in terms of the energy, the height, and the smoothness of the potential barrier. For any value of the smoothness parameter we observed transmission resonances.


1995 ◽  
Vol 32 (4) ◽  
pp. 1007-1013 ◽  
Author(s):  
Marco Dominé

The first-passage problem for the one-dimensional Wiener process with drift in the presence of elastic boundaries is considered. We use the Kolmogorov backward equation with corresponding boundary conditions to derive explicit closed-form expressions for the expected value and the variance of the first-passage time. Special cases with pure absorbing and/or reflecting barriers arise for a certain choice of a parameter constellation.


2014 ◽  
Vol 8 ◽  
pp. 4285-4300
Author(s):  
J.J. Alvarez ◽  
M. Gadella ◽  
L.P. Lara

Sign in / Sign up

Export Citation Format

Share Document