scholarly journals Solutions to the modified Korteweg–de Vries equation

2014 ◽  
Vol 26 (07) ◽  
pp. 1430006 ◽  
Author(s):  
Da-Jun Zhang ◽  
Song-Lin Zhao ◽  
Ying-Ying Sun ◽  
Jing Zhou

This is a continuation of [Notes on solutions in Wronskian form to soliton equations: Korteweg–de Vries-type, arXiv:nlin.SI/0603008]. In the present paper, we review solutions to the modified Korteweg–de Vries equation in terms of Wronskians. The Wronskian entry vector needs to satisfy a matrix differential equation set which contains complex operation. This fact makes the analysis of the modified Korteweg–de Vries to be different from the case of the Korteweg–de Vries equation. To derive complete solution expressions for the matrix differential equation set, we introduce an auxiliary matrix to deal with the complex operation. As a result, the obtained solutions to the modified Korteweg–de Vries equation are categorized into two types: solitons and breathers, together with their limit cases. Besides, we give rational solutions to the modified Korteweg–de Vries equation in Wronskian form. This is derived with the help of a Galilean transformed version of the modified Korteweg–de Vries equation. Finally, typical dynamics of the obtained solutions are analyzed and illustrated. We also list out the obtained solutions and their corresponding basic Wronskian vectors in the conclusion part.

2006 ◽  
Vol 17 (4) ◽  
pp. 417-433 ◽  
Author(s):  
J. ĈERMÁK

The paper focuses on the matrix differential equation \[ \dot y(t)=A(t)y(t)+\sum_{j=1}^{m}B_j(t)y(\tau_j(t))+f(t),\quad t\in I=[t_0,\infty)\vspace*{-3pt} \] with continuous matrices $A$, $B_j$, a continuous vector $f$ and continuous delays $\tau_j$ satisfying $\tau_k\circ\tau_l =\tau_l\circ\tau_k$ on $I$ for any pair $\tau_k,\tau_l$. Assuming that the equation \[ \dot y(t)=A(t)y(t)\] is uniformly exponentially stable, we present some asymptotic bounds of solutions $y$ of the considered delay equation. A system of simultaneous Schröder equations is used to formulate these asymptotic bounds.


2011 ◽  
Vol 52 ◽  
Author(s):  
Irma Ivanovienė ◽  
Jonas Rimas

The method of finding roots of the matrix transcendental characteristic equation, corresponding to linear matrix differential equation with delayed argument, is analyzed. The examples of the application of the method are presented. 


1970 ◽  
Vol 42 (4) ◽  
pp. 803-822 ◽  
Author(s):  
S. Leibovich

The Korteweg–de Vries equation is shown to govern formation of solitary and cnoidal waves in rotating fluids confined in tubes. It is proved that the method must fail when the tube wall is moved to infinity, and the failure is corrected by singular perturbation procedures. The Korteweg–de Vries equation must then give way to an integro-differential equation. Also, critical stationary flows in tubes are considered with regard to Benjamin's vortex breakdown theories.


2019 ◽  
Vol 50 (3) ◽  
pp. 281-291 ◽  
Author(s):  
G. U. Urazboev ◽  
A. K. Babadjanova

In this work we deduce laws of the evolution of the scattering  data for the matrix Zakharov Shabat system with the potential that is the solution of the matrix modied KdV equation with a self consistent source.


1996 ◽  
Vol 27 (3) ◽  
pp. 219-225
Author(s):  
M. S. N. MURTY

In this paper we investigate the close relationships between the stability constants and the growth behaviour of the fundamental matrix to the general FPBVP'S associated with the general first order matrix differential equation.


Sign in / Sign up

Export Citation Format

Share Document