EXACT SOLUTIONS OF CONFORMAL FIELD THEORY IN TWO DIMENSIONS AND CRITICAL PHENOMENA

1989 ◽  
Vol 01 (02n03) ◽  
pp. 197-234 ◽  
Author(s):  
A. B. ZAMOLODCHIKOV

Modern development of conformal field theory in two dimensions and its applications to critical phenomena are briefly reviewed. The specific properties of the renormalization group in two dimensions and the fundamentals of 2-dimensional conformal field theory are presented. The properties of degenerate representations of the Virasoro algebra and other infinite dimensional algebras, "minimal" models of conformal and superconformal field theory, "parafermionic" and other symmetries are discussed. We also investigate a perturbation theory around conformal solutions of field theory.

2014 ◽  
Vol 6 (2) ◽  
pp. 1079-1105
Author(s):  
Rahul Nigam

In this review we study the elementary structure of Conformal Field Theory in which is a recipe for further studies of critical behavior of various systems in statistical mechanics and quantum field theory. We briefly review CFT in dimensions which plays a prominent role for example in the well-known duality AdS/CFT in string theory where the CFT lives on the AdS boundary. We also describe the mapping of the theory from the cylinder to a complex plane which will help us gain an insight into the process of radial quantization and radial ordering. Finally we will develop the representation of the Virasoro algebra which is the well-known "Verma module".  


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Yuan Yao ◽  
Akira Furusaki

AbstractWe formulate a ℤk-parafermionization/bosonization scheme for one-dimensional lattice models and field theories on a torus, starting from a generalized Jordan-Wigner transformation on a lattice, which extends the Majorana-Ising duality atk= 2. The ℤk-parafermionization enables us to investigate the critical theories of parafermionic chains whose fundamental degrees of freedom are parafermionic, and we find that their criticality cannot be described by any existing conformal field theory. The modular transformations of these parafermionic low-energy critical theories as general consistency conditions are found to be unconventional in that their partition functions on a torus transform differently from any conformal field theory whenk >2. Explicit forms of partition functions are obtained by the developed parafermionization for a large class of critical ℤk-parafermionic chains, whose operator contents are intrinsically distinct from any bosonic or fermionic model in terms of conformal spins and statistics. We also use the parafermionization to exhaust all the ℤk-parafermionic minimal models, complementing earlier works on fermionic cases.


2000 ◽  
Vol 15 (19) ◽  
pp. 3065-3094
Author(s):  
SHI-SHYR ROAN

We present a theta function representation of the twisted characters for the rational N=2 superconformal field theory, and discuss the Jacobi-form like functional properties of these characters for a fixed central charge under the action of a finite Heisenberg group and modular transformations.


2012 ◽  
Vol 27 (08) ◽  
pp. 1250046 ◽  
Author(s):  
A. M. GHEZELBASH

We study the extremal rotating spacetimes with a NUT twist in the context of recently proposed Kerr/CFT correspondence. The Kerr/CFT correspondence states that the near-horizon states of an extremal four (or higher) dimensional black hole could be identified with a certain chiral conformal field theory. The corresponding Virasoro algebra is generated with a class of diffeomorphism which preserves an appropriate boundary condition on the near-horizon geometry. We combine the calculated central charges with the expected form of the temperature, using the Cardy formula to obtain the microscopically entropy of the extremal rotating spacetimes with a NUT twist. All results are in agreement with the macroscopic entropy of the extremal spacetimes.


Sign in / Sign up

Export Citation Format

Share Document