Applications of monotone operators to a class of fractional Laplacian equation

2015 ◽  
Vol 26 (07) ◽  
pp. 1550043
Author(s):  
V. Raghavendra ◽  
Rasmita Kar

In this study we establish the existence of a weak solution for a class of nonlocal problem [Formula: see text] where [Formula: see text] is a general nonlocal integro-differential operator of fractional type, λ is a real parameter, Ω is an open bounded subset of ℝn(n > 2s, where s ∈(0, 1) is fixed) with continuous boundary ∂Ω. Here f, g1: Ω → ℝ and h : ℝ → ℝ are functions satisfying suitable hypotheses.

2016 ◽  
Vol 102 (3) ◽  
pp. 392-404
Author(s):  
V. RAGHAVENDRA ◽  
RASMITA KAR

We study the existence of a weak solution of a nonlocal problem$$\begin{eqnarray}\displaystyle & \displaystyle -{\mathcal{L}}_{K}u-\unicode[STIX]{x1D707}ug_{1}+h(u)g_{2}=f\quad \text{in }\unicode[STIX]{x1D6FA}, & \displaystyle \nonumber\\ \displaystyle & \displaystyle u=0\quad \text{in }\mathbb{R}^{n}\setminus \unicode[STIX]{x1D6FA}, & \displaystyle \nonumber\end{eqnarray}$$where${\mathcal{L}}_{k}$is a general nonlocal integrodifferential operator of fractional type,$\unicode[STIX]{x1D707}$is a real parameter and$\unicode[STIX]{x1D6FA}$is an open bounded subset of$\mathbb{R}^{n}$($n>2s$, where$s\in (0,1)$is fixed) with Lipschitz boundary$\unicode[STIX]{x2202}\unicode[STIX]{x1D6FA}$. Here$f,g_{1},g_{2}:\unicode[STIX]{x1D6FA}\rightarrow \mathbb{R}$and$h:\mathbb{R}\rightarrow \mathbb{R}$are functions satisfying suitable hypotheses.


2017 ◽  
Vol 8 (1) ◽  
pp. 645-660 ◽  
Author(s):  
Alessio Fiscella

Abstract In this paper, we consider the following critical nonlocal problem: \left\{\begin{aligned} &\displaystyle M\bigg{(}\iint_{\mathbb{R}^{2N}}\frac{% \lvert u(x)-u(y)\rvert^{2}}{\lvert x-y\rvert^{N+2s}}\,dx\,dy\biggr{)}(-\Delta)% ^{s}u=\frac{\lambda}{u^{\gamma}}+u^{2^{*}_{s}-1}&&\displaystyle\phantom{}\text% {in }\Omega,\\ \displaystyle u&\displaystyle>0&&\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\phantom{}\text{in }\mathbb{R}^{% N}\setminus\Omega,\end{aligned}\right. where Ω is an open bounded subset of {\mathbb{R}^{N}} with continuous boundary, dimension {N>2s} with parameter {s\in(0,1)} , {2^{*}_{s}=2N/(N-2s)} is the fractional critical Sobolev exponent, {\lambda>0} is a real parameter, {\gamma\in(0,1)} and M models a Kirchhoff-type coefficient, while {(-\Delta)^{s}} is the fractional Laplace operator. In particular, we cover the delicate degenerate case, that is, when the Kirchhoff function M is zero at zero. By combining variational methods with an appropriate truncation argument, we provide the existence of two solutions.


2019 ◽  
Vol 19 (1) ◽  
pp. 197-217 ◽  
Author(s):  
Caifeng Zhang

Abstract In line with the Trudinger–Moser inequality in the fractional Sobolev–Slobodeckij space due to [S. Iula, A note on the Moser–Trudinger inequality in Sobolev–Slobodeckij spaces in dimension one, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 2017, 4, 871–884] and [E. Parini and B. Ruf, On the Moser–Trudinger inequality in fractional Sobolev–Slobodeckij spaces, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 2018, 2, 315–319], we establish a new version of the Trudinger–Moser inequality in {W^{s,p}(\mathbb{R}^{N})} . Define \lVert u\rVert_{1,\tau}=\bigl{(}[u]^{p}_{W^{s,p}(\mathbb{R}^{N})}+\tau\lVert u% \rVert_{p}^{p}\bigr{)}^{\frac{1}{p}}\quad\text{for any }\tau>0. There holds \sup_{u\in W^{s,p}(\mathbb{R}^{N}),\lVert u\rVert_{1,\tau}\leq 1}\int_{\mathbb% {R}^{N}}\Phi_{N,s}\bigl{(}\alpha\lvert u\rvert^{\frac{N}{N-s}}\bigr{)}<+\infty, where {s\in(0,1)} , {sp=N} , {\alpha\in[0,\alpha_{*})} and \Phi_{N,s}(t)=e^{t}-\sum_{i=0}^{j_{p}-2}\frac{t^{j}}{j!}. Applying this result, we establish sufficient conditions for the existence of weak solutions to the following quasilinear nonhomogeneous fractional-Laplacian equation: (-\Delta)_{p}^{s}u(x)+V(x)\lvert u(x)\rvert^{p-2}u(x)=f(x,u)+\varepsilon h(x)% \quad\text{in }\mathbb{R}^{N}, where {V(x)} has a positive lower bound, {f(x,t)} behaves like {e^{\alpha\lvert t\rvert^{N/(N-s)}}} , {h\in(W^{s,p}(\mathbb{R}^{N}))^{*}} and {\varepsilon>0} . Moreover, we also derive a weak solution with negative energy.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Dandan Yang ◽  
Chuanzhi Bai

The existence of three weak solutions for the following nonlocal fractional equation(-Δ)su-λu=μf(x,u)inΩ,u=0inℝn∖Ω,is investigated, wheres∈(0,1)is fixed,(-Δ)sis the fractional Laplace operator,λandμare real parameters,Ωis an open bounded subset ofℝn,n>2s, and the functionfsatisfies some regularity and natural growth conditions. The approach is based on a three-critical-point theorem for differential functionals.


2020 ◽  
Vol 26 (2) ◽  
pp. 297-307
Author(s):  
Petro I. Kalenyuk ◽  
Yaroslav O. Baranetskij ◽  
Lubov I. Kolyasa

AbstractWe study a nonlocal problem for ordinary differential equations of {2n}-order with involution. Spectral properties of the operator of this problem are analyzed and conditions for the existence and uniqueness of its solution are established. It is also proved that the system of eigenfunctions of the analyzed problem forms a Riesz basis.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 851
Author(s):  
Robert Stegliński

In the present paper we give conditions under which there exists a unique weak solution for a nonlocal equation driven by the integrodifferential operator of fractional Laplacian type. We argue for the optimality of some assumptions. Some Lyapunov-type inequalities are given. We also study the continuous dependence of the solution on parameters. In proofs we use monotonicity and variational methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jimao Xiawu ◽  
Shuibo Huang ◽  
Yingyuan Mi ◽  
Maoji Ri

In this paper we consider the existence of W01,1Ω solutions to following kind of problems −div∇up−2∇u/1+uθp−1=fx,x∈Ω;ux=0,x∈∂Ω where Ω is an open bounded subset of RNN>2, maxp−2N+1/p−1N−1,0<θ<1 and 1<p⩽1+N−1/N1−θ+θ, f is a function which belongs to a suitable integrable space.


Sign in / Sign up

Export Citation Format

Share Document