scholarly journals CLUSTER STRUCTURES ON HIGHER TEICHMULLER SPACES FOR CLASSICAL GROUPS

2019 ◽  
Vol 7 ◽  
Author(s):  
IAN LE

Let $S$ be a surface, $G$ a simply connected classical group, and $G^{\prime }$ the associated adjoint form of the group. We show that the moduli spaces of framed local systems ${\mathcal{X}}_{G^{\prime },S}$ and ${\mathcal{A}}_{G,S}$, which were constructed by Fock and Goncharov [‘Moduli spaces of local systems and higher Teichmuller theory’, Publ. Math. Inst. Hautes Études Sci.103 (2006), 1–212], have the structure of cluster varieties, and thus together form a cluster ensemble. This simplifies some of the proofs in that paper, and also allows one to quantize higher Teichmuller space, which was previously only possible when $G$ was of type $A$.

2017 ◽  
Vol 2019 (16) ◽  
pp. 4899-4949 ◽  
Author(s):  
Ian Le

Abstract Let $S$ be a surface, $G$ a simply-connected semi-simple group, and $G'$ the associated adjoint form of the group. In Fock and Goncharov [4], the authors show that the moduli spaces of framed local systems $\mathcal{X}_{G',S}$ and $\mathcal{A}_{G,S}$ have the structure of cluster varieties when $G$ had type $A$. This was extended to classical groups in Le [12]. In this article, we give a method for constructing the cluster structure for general reductive groups $G$. The method depends on being able to carry out some explicit computations, and depends on some mild hypotheses, which we state, and which we believe hold in general. These hypotheses hold when $G$ has type $G_2,$ and therefore we are able to construct the cluster structure in this case. We also illustrate our approach by rederiving the cluster structure for $G$ of type $A$. Our goals are to give some heuristics for the approach taken in Le [12], point out the difficulties that arise for more general groups, and to record some useful calculations. Forthcoming work by Goncharov and Shen gives a different approach to constructing the cluster structure on $\mathcal{X}_{G',S}$ and $\mathcal{A}_{G,S}$. We hope that some of the ideas here complement their more comprehensive work.


1998 ◽  
Vol 09 (01) ◽  
pp. 1-45 ◽  
Author(s):  
JØRGEN ELLEGAARD ANDERSEN

Given a foliation F with closed leaves and with certain kinds of singularities on an oriented closed surface Σ, we construct in this paper an isotropic foliation on ℳ(Σ), the moduli space of flat G-connections, for G any compact simple simply connected Lie-group. We describe the infinitesimal structure of this isotropic foliation in terms of the basic cohomology with twisted coefficients of F. For any pair (F, g), where g is a singular metric on Σ compatible with F, we construct a new polarization on the symplectic manifold ℳ′(Σ), the open dense subset of smooth points of ℳ(Σ). We construct a sequence of complex structures on Σ, such that the corresponding complex structures on ℳ′(Σ) converges to the polarization associated to (F, g). In particular we see that the Jeffrey–Weitzman polarization on the SU(2)-moduli space is the limit of a sequence of complex structures induced from a degenerating family of complex structures on Σ, which converges to a point in the Thurston boundary of Teichmüller space of Σ. As a corollary of the above constructions, we establish a certain discontinuiuty at the Thurston boundary of Teichmüller space for the map from Teichmüller space to the space of polarizations on ℳ′(Σ). For any reducible finite order diffeomorphism of the surface, our constuction produces an invariant polarization on the moduli space.


2008 ◽  
Vol 144 (3) ◽  
pp. 721-733 ◽  
Author(s):  
Olivier Serman

AbstractWe prove that, given a smooth projective curve C of genus g≥2, the forgetful morphism $\mathcal {M}_{\mathbf {O}_r} \longrightarrow \mathcal {M}_{\mathbf {GL}_r}$ (respectively $\mathcal M_{\mathbf {Sp}_{2r}}\longrightarrow \mathcal M_{\mathbf {GL}_{2r}}$) from the moduli space of orthogonal (respectively symplectic) bundles to the moduli space of all vector bundles over C is an embedding. Our proof relies on an explicit description of a set of generators for the polynomial invariants on the representation space of a quiver under the action of a product of classical groups.


Author(s):  
Robert Kurinczuk ◽  
Daniel Skodlerack ◽  
Shaun Stevens

Abstract For a classical group over a non-archimedean local field of odd residual characteristic p, we prove that two cuspidal types, defined over an algebraically closed field $${\mathbf {C}}$$ C of characteristic different from p, intertwine if and only if they are conjugate. This completes work of the first and third authors who showed that every irreducible cuspidal $${\mathbf {C}}$$ C -representation of a classical group is compactly induced from a cuspidal type. We generalize Bushnell and Henniart’s notion of endo-equivalence to semisimple characters of general linear groups and to self-dual semisimple characters of classical groups, and introduce (self-dual) endo-parameters. We prove that these parametrize intertwining classes of (self-dual) semisimple characters and conjecture that they are in bijection with wild Langlands parameters, compatibly with the local Langlands correspondence.


Author(s):  
Michael Wiemeler

Abstract Let $M$ be a simply connected spin manifold of dimension at least six, which admits a metric of positive scalar curvature. We show that the observer moduli space of positive scalar curvature metrics on $M$ has non-trivial higher homotopy groups. Moreover, denote by $\mathcal{M}_0^+(M)$ the moduli space of positive scalar curvature metrics on $M$ associated to the group of orientation-preserving diffeomorphisms of $M$. We show that if $M$ belongs to a certain class of manifolds that includes $(2n-2)$-connected $(4n-2)$-dimensional manifolds, then the fundamental group of $\mathcal{M}_0^+(M)$ is non-trivial.


2013 ◽  
Vol 20 (01) ◽  
pp. 163-168
Author(s):  
Xueling Song ◽  
Yanjun Liu

Let G be a finite classical group of characteristic p. In this paper, we give an arithmetic criterion of the primes r ≠ p, for which the Steinberg character lies in the principal r-block of G. The arithmetic criterion is obtained from some combinatorial objects (the so-called partition and symbol).


2004 ◽  
Vol 56 (6) ◽  
pp. 1228-1236 ◽  
Author(s):  
Nan-Kuo Ho ◽  
Chiu-Chu Melissa Liu

AbstractWe study the connectedness of the moduli space of gauge equivalence classes of flat G-connections on a compact orientable surface or a compact nonorientable surface for a class of compact connected Lie groups. This class includes all the compact, connected, simply connected Lie groups, and some non-semisimple classical groups.


Sign in / Sign up

Export Citation Format

Share Document