scholarly journals ON -K2 FOR NORMAL SURFACE SINGULARITIES

1998 ◽  
Vol 09 (06) ◽  
pp. 653-668 ◽  
Author(s):  
HAO CHEN ◽  
SHIHOKO ISHII

In this paper we show the lower bound of the set of non-zero -K2 for normal surface singularities establishing that this set has no accumulation points from above. We also prove that every accumulation point from below is a rational number and every positive integer is an accumulation point. Every rational number can be an accumulation point modulo ℤ. We determine all accumulation points in [0, 1]. If we fix the value -K2, then the values of pg, pa, mult, embdim and the numerical indices are bounded, while the numbers of the exceptional curves are not bounded.

2000 ◽  
Vol 11 (09) ◽  
pp. 1193-1202
Author(s):  
HAO CHEN ◽  
SHIHOKO ISHII

In this paper we continue our study [1] of the set of nonzero -K2 of normal surface singularities. The main results are (1) Every accumulation point of the set is the sum of -K2 of several normal surface singularities; (2) There are accumulation points of the set which are not -K2 of any one normal surface singularity, which means that the set {-K2} is not closed.


2008 ◽  
Vol 08 (03) ◽  
pp. 351-363 ◽  
Author(s):  
FRITZ COLONIUS ◽  
PETER E. KLOEDEN ◽  
MARTIN RASMUSSEN

The concept of a Morse decomposition consisting of nonautonomous sets is reviewed for linear cocycle mappings w.r.t. the past, future and all-time convergences. In each case, the set of accumulation points of the finite-time Lyapunov exponents corresponding to points in a nonautonomous set is shown to be an interval. For a finest Morse decomposition, the Morse spectrum is defined as the union of all of the above accumulation point intervals over the different nonautonomous sets in such a finest Morse decomposition. In addition, Morse spectrum is shown to be independent of which finest Morse decomposition is used, when more than one exists.


2009 ◽  
Vol 51 (2) ◽  
pp. 243-252
Author(s):  
ARTŪRAS DUBICKAS

AbstractLetx0<x1<x2< ⋅⋅⋅ be an increasing sequence of positive integers given by the formulaxn=⌊βxn−1+ γ⌋ forn=1, 2, 3, . . ., where β > 1 and γ are real numbers andx0is a positive integer. We describe the conditions on integersbd, . . .,b0, not all zero, and on a real number β > 1 under which the sequence of integerswn=bdxn+d+ ⋅⋅⋅ +b0xn,n=0, 1, 2, . . ., is bounded by a constant independent ofn. The conditions under which this sequence can be ultimately periodic are also described. Finally, we prove a lower bound on the complexity function of the sequenceqxn+1−pxn∈ {0, 1, . . .,q−1},n=0, 1, 2, . . ., wherex0is a positive integer,p>q> 1 are coprime integers andxn=⌈pxn−1/q⌉ forn=1, 2, 3, . . . A similar speculative result concerning the complexity of the sequence of alternatives (F:x↦x/2 orS:x↦(3x+1)/2) in the 3x+1 problem is also given.


Author(s):  
János Nagy ◽  
András Némethi

AbstractThe present note is part of a series of articles targeting the theory of Abel maps associated with complex normal surface singularities with rational homology sphere links (Nagy and Némethi in Math Annal 375(3):1427–1487, 2019; Nagy and Némethi in Adv Math 371:20, 2020; Nagy and Némethi in Pure Appl Math Q 16(4):1123–1146, 2020). Besides the general theory, by the study of specific families we wish to show the power of this new method. Indeed, using the general theory of Abel maps applied for elliptic singularities in this note we are able to prove several key properties for elliptic singularities (e.g. the statements of the next paragraph), which by ‘old’ techniques were not reachable. If $$({\widetilde{X}},E)\rightarrow (X,o)$$ ( X ~ , E ) → ( X , o ) is the resolution of a complex normal surface singularity and $$c_1:{\mathrm{Pic}}({\widetilde{X}})\rightarrow H^2({\widetilde{X}},{\mathbb {Z}})$$ c 1 : Pic ( X ~ ) → H 2 ( X ~ , Z ) is the Chern class map, then $${\mathrm{Pic}}^{l'}({\widetilde{X}}):= c_1^{-1}(l')$$ Pic l ′ ( X ~ ) : = c 1 - 1 ( l ′ ) has a (Brill–Noether type) stratification $$W_{l', k}:= \{{\mathcal {L}}\in {\mathrm{Pic}}^{l'}({\widetilde{X}})\,:\, h^1({\mathcal {L}})=k\}$$ W l ′ , k : = { L ∈ Pic l ′ ( X ~ ) : h 1 ( L ) = k } . In this note we determine it for elliptic singularities together with the stratification according to the cycle of fixed components. E.g., we show that the closure of any $$W(l',k)$$ W ( l ′ , k ) is an affine subspace. For elliptic singularities we also characterize the End Curve Condition and Weak End Curve Condition in terms of the Abel map, we provide several characterization of them, and finally we show that they are equivalent.


Author(s):  
Xing-Wang Jiang ◽  
Csaba Sándor ◽  
Quan-Hui Yang

For a set [Formula: see text] of nonnegative integers, let [Formula: see text] denote the number of solutions to [Formula: see text] with [Formula: see text], [Formula: see text]. Let [Formula: see text] be the Thue–Morse sequence and [Formula: see text]. Let [Formula: see text] and [Formula: see text] be a positive integer such that [Formula: see text] for all [Formula: see text]. Previously, the first author proved that if [Formula: see text] and [Formula: see text], then [Formula: see text] for all [Formula: see text]. In this paper, we prove that the above lower bound is nearly best possible. We also get some other results.


Author(s):  
Nurdin Hinding ◽  
Hye Kyung Kim ◽  
Nurtiti Sunusi ◽  
Riskawati Mise

For a simple graph G with a vertex set V G and an edge set E G , a labeling f : V G ∪ ​ E G ⟶ 1,2 , ⋯ , k is called a vertex irregular total k − labeling of G if for any two different vertices x and y in V G we have w t x ≠ w t y where w t x = f x + ∑ u ∈ V G f x u . The smallest positive integer k such that G has a vertex irregular total k − labeling is called the total vertex irregularity strength of G , denoted by tvs G . The lower bound of tvs G for any graph G have been found by Baca et. al. In this paper, we determined the exact value of the total vertex irregularity strength of the hexagonal cluster graph on n cluster for n ≥ 2 . Moreover, we show that the total vertex irregularity strength of the hexagonal cluster graph on n cluster is 3 n 2 + 1 / 2 .


2019 ◽  
Vol 16 (03) ◽  
pp. 511-522
Author(s):  
Xing-Wang Jiang

For a set [Formula: see text] of nonnegative integers, let [Formula: see text] denote the number of solutions to [Formula: see text] with [Formula: see text]. Let [Formula: see text] be the set of all nonnegative integers [Formula: see text] with an even number of ones in the binary representation of [Formula: see text] and let [Formula: see text]. Let [Formula: see text] and [Formula: see text] be a positive integer such that [Formula: see text] for all [Formula: see text]. In 2011, Chen proved that, if [Formula: see text] and [Formula: see text], then [Formula: see text] for all [Formula: see text]. In this paper, we improve the lower bound by proving that [Formula: see text] for all [Formula: see text].


1967 ◽  
Vol 15 (4) ◽  
pp. 249-255
Author(s):  
Sean Mc Donagh

1. In deriving an expression for the number of representations of a sufficiently large integer N in the formwhere k: is a positive integer, s(k) a suitably large function of k and pi is a prime number, i = 1, 2, …, s(k), by Vinogradov's method it is necessary to obtain estimates for trigonometrical sums of the typewhere ω = l/k and the real number a satisfies 0 ≦ α ≦ 1 and is “near” a rational number a/q, (a, q) = 1, with “large” denominator q. See Estermann (1), Chapter 3, for the case k = 1 or Hua (2), for the general case. The meaning of “near” and “arge” is made clear below—Lemma 4—as it is necessary for us to quote Hua's estimate. In this paper, in Theorem 1, an estimate is obtained for the trigonometrical sumwhere α satisfies the same conditions as above and where π denotes a squarefree number with r prime factors. This estimate enables one to derive expressions for the number of representations of a sufficiently large integer N in the formwhere s(k) has the same meaning as above and where πri, i = 1, 2, …, s(k), denotes a square-free integer with ri prime factors.


1985 ◽  
Vol 98 ◽  
pp. 117-137 ◽  
Author(s):  
Noburo Ishii

Let m be a non-square positive integer. Let K be the Galois extension over the rational number field Q generated by and . Then its Galois group over Q is the dihedral group D4 of order 8 and has the unique two-dimensional irreducible complex representation ψ. In view of the theory of Hecke-Weil-Langlands, we know that ψ defines a cusp form of weight one (cf. Serre [6]).


Sign in / Sign up

Export Citation Format

Share Document