FROM CARBON NANOTUBES TO CARBON NANORODS

2000 ◽  
Vol 11 (06) ◽  
pp. 1247-1255 ◽  
Author(s):  
ŞAKIR ERKOÇ

The structural properties of single and multi-wall carbon nanotubes and the formation of carbon nanorods from multi-wall carbon nanotubes have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanorod formation takes place with smallest possible multi-wall nanotubes under heat treatment. On the other hand, it has been also found that single-wall carbon nanotubes are stronger than the multi-wall nanotubes against heat treatment.

2001 ◽  
Vol 12 (06) ◽  
pp. 865-870 ◽  
Author(s):  
ŞAKIR ERKOÇ ◽  
OSMAN BARIŞ MALCIOĞLU

The effect of chirality on the structural stability of single-wall carbon nanotubes have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanotube in chiral structure is more stable under heat treatment relative to zigzag and armchair models. The diameter of the tubes is slightly enlarged under heat treatment.


2001 ◽  
Vol 12 (05) ◽  
pp. 685-690 ◽  
Author(s):  
ŞAKIR ERKOÇ ◽  
DERVIŞ CAN VURAL

The structural stability of carbon nanocages, fullerens and toroids, have been investigated by performing molecular-dynamics computer simulations. The systems considered are C 120 and C 240 in ball and toroidal structures. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that C 120 ball is very unstable, and the other structures are relatively more strong against heat treatment.


2002 ◽  
Vol 13 (03) ◽  
pp. 367-373 ◽  
Author(s):  
ŞAKIR ERKOÇ ◽  
OSMAN BARIŞ MALCIOĞLU

The formation of carbon nanorods from various types of carbon nanotubes has been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanorod formed from carbon nanotubes with different chirality is not stable even at low temperature.


2012 ◽  
Vol 10 (4) ◽  
pp. 1028-1033 ◽  
Author(s):  
Anahita Kyani ◽  
Mircea Diudea

AbstractDiamond D5 is the name proposed by Diudea for hyper-diamonds having their rings mostly pentagonal. Within D5, in crystallographic terms: the mtn structure, known in clathrates of type II, several substructures can be defined. In the present work, the structural stability of such intermediates/fragments appearing in the construction/destruction of D5 net was investigated using molecular dynamics simulation. Calculations were performed using an empirical many-body potential energy function for hydrocarbons. It has been found that, at normal temperature, the hexagonal hyper-rings are more stable while at higher temperature, the pentagonal ones are relatively more resistant against heat treatment.


2001 ◽  
Vol 12 (09) ◽  
pp. 1391-1399 ◽  
Author(s):  
ŞAKIR ERKOÇ ◽  
LEMI TÜRKER

The structural stability of carbon nanoballs (fullerenes) C 20, C 60, and onion type C 20@ C 60 has been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that C 20 is relatively resistive to heat treatment, however, the onion type structure is relatively less strong against heat treatment. The electronic structure of the systems considered has been also studied by performing density functional theory type calculations.


1990 ◽  
Vol 206 ◽  
Author(s):  
R.C. Mowrey ◽  
D.W. Brenner ◽  
B.I. Dunlap ◽  
J.W. Mintmire ◽  
C.T. White

ABSTRACTWe have performed molecular dynamics simulations using a recently developed empirical many-body potential energy function to study the collision of the C60 isomer buckmin-sterfullerene with a hydrogen-terminated diamond surface. The simulations indicate that the cluster can react with the surface and has a larger probability of gaining atoms from the surface than of losing atoms to the surface. We have investigated the dependence of the reaction probability on the initial center-of-mass translational velocity of the cluster. The structures and energy distributions of the product clusters have been determined. Both inelastically and reactively scattered clusters have large amounts of internal energy which suggests that gas-phase dissociation is likely.


Sign in / Sign up

Export Citation Format

Share Document