LATTICE BOLTZMANN SIMULATIONS OF DISCONTINUOUS FLOWS

2007 ◽  
Vol 18 (01) ◽  
pp. 1-14 ◽  
Author(s):  
JIAN GUO ZHOU

The lattice Boltzmann model for the shallow water equations (LABSWE) is applied to the simulation of certain discontinuous flows. Curved boundaries are treated efficiently, using either the elastic-collision scheme for slip and semi-slip boundary conditions or the bounce-back scheme for no-slip conditions. The force term is accurately determined by means of the centred scheme. Simulations are presented of a small pulse-like perturbation of the still water surface, a dam break, and a surge wave interaction with a circular cylinder. The results agree well with predictions from alternative high-resolution Riemann solver based methods, demonstrating the capability of LABSWE to predict shallow water flows containing discontinuities.

2013 ◽  
Vol 24 (01) ◽  
pp. 1250094 ◽  
Author(s):  
Y. PENG ◽  
J. G. ZHOU ◽  
J. M. ZHANG ◽  
R. BURROWS

A lattice Boltzmann model (LBM) for a moving body in shallow waters is developed. Three different schemes, FH's, Guo's and MMP's schemes, for a curved boundary condition at second-order accuracy are used in the study and compared in detail. The multiple-relaxation-time (MRT) is adopted for better stability. In order to deal with the moving body boundary, a certain momentum is added to reflect the interaction between the fluid and the solid; and a refill method for new wetted nodes moving out from solid nodes has been proposed. The described method is applied to simulate static and moving cylinders in shallow waters. The corresponding experiments are further performed for validation of the present model. It is found that all of the three schemes produce similar results that agree well with the experimental data for the static cylinder. However, for the moving boundary, MMP's scheme performs best. Overall, the proposed modeling approach is able to simulate both, static and moving cylinders in shallow water flows at acceptable accuracy.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 439 ◽  
Author(s):  
Sara Venturi ◽  
Silvia Di Francesco ◽  
Martin Geier ◽  
Piergiorgio Manciola

This work compares three forcing schemes for a recently introduced cascaded lattice Boltzmann shallow water model: a basic scheme, a second-order scheme, and a centred scheme. Although the force is applied in the streaming step of the lattice Boltzmann model, the acceleration is also considered in the transformation to central moments. The model performance is tested for one and two dimensional benchmarks.


Sign in / Sign up

Export Citation Format

Share Document