NUMEROV-TYPE METHODS FOR OSCILLATORY LINEAR INITIAL VALUE PROBLEMS

2009 ◽  
Vol 20 (03) ◽  
pp. 383-398 ◽  
Author(s):  
I. TH. FAMELIS

We present a new explicit Numerov-type method for the solution of second-order linear initial value problems with oscillating solutions. The new method attains algebraic order seven at a cost of six function evaluations per step. The method has the characteristic of zero dissipation and high phase-lag order making it suitable for the solution of problems with oscillatory solutions. The numerical tests in a variety of problems justify our effort.

2008 ◽  
Vol 19 (06) ◽  
pp. 957-970 ◽  
Author(s):  
I. Th. FAMELIS

Using a new methodology for deriving hybrid Numerov-type schemes, we present new explicit methods for the solution of second order initial value problems with oscillating solutions. The new methods attain algebraic order eight at a cost of eight function evaluations per step which is the most economical in computational cost that can be found in the literature. The methods have high amplification and phase-lag order characteristics in order to suit to the solution of problems with oscillatory solutions. The numerical tests in a variety of problems justify our effort.


1995 ◽  
Vol 05 (02) ◽  
pp. 159-166 ◽  
Author(s):  
T.E. SIMOS

An explicit Runge-Kutta type method is developed here. This method has an algebraic order six, a large interval of periodicity and a phase-lag of order eight. It is much more efficient than other well known methods when applying to an orbit equation.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 713
Author(s):  
Higinio Ramos ◽  
Ridwanulahi Abdulganiy ◽  
Ruth Olowe ◽  
Samuel Jator

One of the well-known schemes for the direct numerical integration of second-order initial-value problems is due to Falkner (Falkner, 1936. Phil. Mag. S. 7, 621). This paper focuses on the construction of a family of adapted block Falkner methods which are frequency dependent for the direct numerical solution of second-order initial value problems with oscillatory solutions. The techniques of collocation and interpolation are adopted here to derive the new methods. The study of the properties of the proposed adapted block Falkner methods reveals that they are consistent and zero-stable, and thus, convergent. Furthermore, the stability analysis and the algebraic order conditions of the proposed methods are established. As may be seen from the numerical results, the resulting family is efficient and competitive compared to some recent methods in the literature.


In this paper we derive a P-stable trigonometric fitted Obrechkoff method with phase-lag (frequency distortion) infinity. It is easy to see, from numerical results presented, that the new method is much more accurate than previous methods.


Author(s):  
Zhongcheng Wang ◽  
Deying Zhao ◽  
Yongming Dai ◽  
Dongmei Wu

In this paper we present an improved P-stable trigonometrically fitted Obrechkoff method with phase-lag (frequency distortion) infinity. Compared with the previous P-stable trigonometrically fitted Obrechkoff method developed by Simos, our new method is simpler in structure and more stable in computation. We have also improved the accuracy of the first-order derivative formula. From the numerical illustration presented, we can show that the new method is much more accurate than the previous methods.


2011 ◽  
Vol 22 (02) ◽  
pp. 133-153 ◽  
Author(s):  
G. A. PANOPOULOS ◽  
Z. A. ANASTASSI ◽  
T. E. SIMOS

A new general multistep predictor-corrector (PC) pair form is introduced for the numerical integration of second-order initial-value problems. Using this form, a new symmetric eight-step predictor-corrector method with minimal phase-lag and algebraic order ten is also constructed. The new method is based on the multistep symmetric method of Quinlan–Tremaine,1 with eight steps and 8th algebraic order and is constructed to solve numerically the radial time-independent Schrödinger equation. It can also be used to integrate related IVPs with oscillating solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. We measure the efficiency of the methods and conclude that the new method with minimal phase-lag is the most efficient of all the compared methods and for all the problems solved.


Sign in / Sign up

Export Citation Format

Share Document