A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions

2008 ◽  
Vol 58 (3) ◽  
pp. 341-351 ◽  
Author(s):  
Yonglei Fang ◽  
Xinyuan Wu
2009 ◽  
Vol 20 (03) ◽  
pp. 383-398 ◽  
Author(s):  
I. TH. FAMELIS

We present a new explicit Numerov-type method for the solution of second-order linear initial value problems with oscillating solutions. The new method attains algebraic order seven at a cost of six function evaluations per step. The method has the characteristic of zero dissipation and high phase-lag order making it suitable for the solution of problems with oscillatory solutions. The numerical tests in a variety of problems justify our effort.


2021 ◽  
Vol 18 (6) ◽  
Author(s):  
R. I. Abdulganiy ◽  
Higinio Ramos ◽  
O. A. Akinfenwa ◽  
S. A. Okunuga

AbstractA functionally-fitted Numerov-type method is developed for the numerical solution of second-order initial-value problems with oscillatory solutions. The basis functions are considered among trigonometric and hyperbolic ones. The characteristics of the method are studied, particularly, it is shown that it has a third order of convergence for the general second-order ordinary differential equation, $$y''=f \left( x,y,y' \right) $$ y ′ ′ = f x , y , y ′ , it is a fourth order convergent method for the special second-order ordinary differential equation, $$y''=f \left( x,y\right) $$ y ′ ′ = f x , y . Comparison with other methods in the literature, even of higher order, shows the good performance of the proposed method.


2002 ◽  
Vol 13 (10) ◽  
pp. 1333-1345 ◽  
Author(s):  
T. E. SIMOS

In this paper a dissipative trigonometrically-fitted two-step explicit hybrid method is developed. This method is based on a dissipative explicit two-step method developed recently by Papageorgiou, Tsitouras and Famelis.6 Numerical examples show that the procedure of trigonometrical fitting is the only way in one to produce efficient dissipative methods for the numerical solution of second order initial value problems (IVPs) with oscillating solutions.


2001 ◽  
Vol 12 (10) ◽  
pp. 1453-1476 ◽  
Author(s):  
T. E. SIMOS ◽  
JESUS VIGO AGUIAR

In this paper we describe procedures for the construction of efficient methods for the numerical solution of second order initial value problems (IVPs) with oscillating solutions. Based on the described procedures we develop two simple and efficient multistep methods for the solution of the above problems. The first method is exponentially-fitted and trigonometrically-fitted and the second has a minimal phase-lag. Both methods are symmetric. Numerical results obtained for several well known problems show the efficiency of the new methods when they are compared with known methods in the literature.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 713
Author(s):  
Higinio Ramos ◽  
Ridwanulahi Abdulganiy ◽  
Ruth Olowe ◽  
Samuel Jator

One of the well-known schemes for the direct numerical integration of second-order initial-value problems is due to Falkner (Falkner, 1936. Phil. Mag. S. 7, 621). This paper focuses on the construction of a family of adapted block Falkner methods which are frequency dependent for the direct numerical solution of second-order initial value problems with oscillatory solutions. The techniques of collocation and interpolation are adopted here to derive the new methods. The study of the properties of the proposed adapted block Falkner methods reveals that they are consistent and zero-stable, and thus, convergent. Furthermore, the stability analysis and the algebraic order conditions of the proposed methods are established. As may be seen from the numerical results, the resulting family is efficient and competitive compared to some recent methods in the literature.


Sign in / Sign up

Export Citation Format

Share Document