scholarly journals Randomized kernel methods for least-squares support vector machines

2017 ◽  
Vol 28 (02) ◽  
pp. 1750015 ◽  
Author(s):  
M. Andrecut

The least-squares support vector machine (LS-SVM) is a frequently used kernel method for non-linear regression and classification tasks. Here we discuss several approximation algorithms for the LS-SVM classifier. The proposed methods are based on randomized block kernel matrices, and we show that they provide good accuracy and reliable scaling for multi-class classification problems with relatively large data sets. Also, we present several numerical experiments that illustrate the practical applicability of the proposed methods.

2021 ◽  
Vol 251 ◽  
pp. 02054
Author(s):  
Olga Sunneborn Gudnadottir ◽  
Daniel Gedon ◽  
Colin Desmarais ◽  
Karl Bengtsson Bernander ◽  
Raazesh Sainudiin ◽  
...  

In recent years, machine-learning methods have become increasingly important for the experiments at the Large Hadron Collider (LHC). They are utilised in everything from trigger systems to reconstruction and data analysis. The recent UCluster method is a general model providing unsupervised clustering of particle physics data, that can be easily modified to provide solutions for a variety of different decision problems. In the current paper, we improve on the UCluster method by adding the option of training the model in a scalable and distributed fashion, and thereby extending its utility to learn from arbitrarily large data sets. UCluster combines a graph-based neural network called ABCnet with a clustering step, using a combined loss function in the training phase. The original code is publicly available in TensorFlow v1.14 and has previously been trained on a single GPU. It shows a clustering accuracy of 81% when applied to the problem of multi-class classification of simulated jet events. Our implementation adds the distributed training functionality by utilising the Horovod distributed training framework, which necessitated a migration of the code to TensorFlow v2. Together with using parquet files for splitting data up between different compute nodes, the distributed training makes the model scalable to any amount of input data, something that will be essential for use with real LHC data sets. We find that the model is well suited for distributed training, with the training time decreasing in direct relation to the number of GPU’s used. However, further improvements by a more exhaustive and possibly distributed hyper-parameter search is required in order to achieve the reported accuracy of the original UCluster method.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hao Jiang ◽  
Wai-Ki Ching

High dimensional bioinformatics data sets provide an excellent and challenging research problem in machine learning area. In particular, DNA microarrays generated gene expression data are of high dimension with significant level of noise. Supervised kernel learning with an SVM classifier was successfully applied in biomedical diagnosis such as discriminating different kinds of tumor tissues. Correlation Kernel has been recently applied to classification problems with Support Vector Machines (SVMs). In this paper, we develop a novel and parsimonious positive semidefinite kernel. The proposed kernel is shown experimentally to have better performance when compared to the usual correlation kernel. In addition, we propose a new kernel based on the correlation matrix incorporating techniques dealing with indefinite kernel. The resulting kernel is shown to be positive semidefinite and it exhibits superior performance to the two kernels mentioned above. We then apply the proposed method to some cancer data in discriminating different tumor tissues, providing information for diagnosis of diseases. Numerical experiments indicate that our method outperforms the existing methods such as the decision tree method and KNN method.


Sign in / Sign up

Export Citation Format

Share Document