Natural convective heat transfer in a hemispherical cavity filled with ZnO–H2O nanofluid saturated porous medium

2018 ◽  
Vol 29 (10) ◽  
pp. 1850097 ◽  
Author(s):  
Abderrahmane Baïri ◽  
Najib Laraqi

This three-dimensional (3D) numerical work based on the volume control method quantifies the convective heat transfer occurring in a hemispherical cavity filled with a ZnO–H2O nanofluid saturated porous medium. Its main objective is to improve the cooling of an electronic component contained in this enclosure. The volume fraction of the considered monophasic nanofluid varies between 0% (pure water) and 10%, while the cupola is maintained isothermal at cold temperature. During operation, the active device generates a heat flux leading to high Rayleigh number reaching [Formula: see text] and may be inclined with respect to the horizontal plane at an angle ranging from 0[Formula: see text] to 180[Formula: see text] (horizontal position with cupola facing upwards and downwards, respectively) by steps of 15[Formula: see text]. The natural convective heat transfer represented by the average Nusselt number has been quantified for many configurations obtained by combining the tilt angle, the Rayleigh number, the nanofluid volume fraction and the ratio between the thermal conductivity of the porous medium’s solid matrix and that of the base fluid. This ratio has a significant influence on the free convective heat transfer and ranges from 0 (without porous media) to 70 in this work. The influence of the four physical parameters is analyzed and commented. An empirical correlation between the Nusselt number and these parameters is proposed, allowing determination of the average natural convective heat transfer occurring in the hemispherical cavity.

Author(s):  
Patrick H. Oosthuizen

A numerical study of natural convective heat transfer from an upward facing, heated horizontal isothermal surface imbedded in a large flat adiabatic surface has been undertaken. On the heated surface is a series of triangular shaped waves. Laminar, transitional, and turbulent flow conditions have been considered. The flow has been assumed to be two-dimensional and steady. The fluid properties have been assumed constant except for the density change with temperature giving rise to the buoyancy forces. This was with treated using the Boussinesq approach. The numerical solution has been obtained using the commercial CFD solver ANSYS FLUENT©. The k-epsilon turbulence model with full account being taken of buoyancy force effects has been employed. The heat transfer rate from the heated surface expressed in terms of a Nusselt number is dependent on the Rayleigh number, the number of waves, the height of the waves relative to the width of the heated surface, and the Prandtl number. This study obtained results for a Prandtl number of 0.74 which is effectively the value for air. An investigation of the effect of the Rayleigh number, the dimensionless height of the surface waves, and the number of surface waves on the Nusselt number has been undertaken.


2021 ◽  
Vol 8 (7) ◽  
pp. 23-30
Author(s):  
Rajab Al-Sayagh ◽  

This paper deals with the study of free convection in a 3D enclosure filled with Al2O3-nanofluid and equipped with a U-shaped obstacle. The used U-shaped obstacle is considered perfectly conductive. The effect of the dimension and the orientation of the obstacle is investigated. In addition, the parameters governing the problem are varied as Rayleigh number (103 to 106), and nanoparticles volume fraction (0 to 7.5%). Results are depicted in terms of flow structures, temperature fields, and Nusselt number. Results show that the obstacle dimension and orientation can control the flow and optimize the heat transfer and the addition of nanoparticles enhances significantly Nusselt number.


Sign in / Sign up

Export Citation Format

Share Document