Numerical solutions for fractional initial value problems of distributed-order

Author(s):  
M. A. Abdelkawy

This paper addresses spectral collocation techniques to treat with the fractional initial value problem of distributed-order. We introduce three algorithms based on shifted fractional order Jacobi orthogonal functions outputted by Jacobi polynomials. The shifted fractional order Jacobi–Gauss–Radau collocation method is developed for approximating the fractional initial value problem of distributed-order. The principal target in our techniques is to transform the fractional initial value problem of distributed-order to a system of algebraic equations. Some numerical examples are given to test the accuracy and applicability of our technique. It is known that the accuracy of numerical approaches for nonsmooth solution is deteriorated. Employing fractional order Jacobi functions instead of the classical Jacobi stopped this deterioration.

Author(s):  
M. A. Abdelkawy

AbstractIn this work, shifted fractional-order Jacobi orthogonal function in the interval $[0,\mathcal{T}]$ is outputted of the classical Jacobi polynomial (see Definition 2.3). Also, we list and derive some facts related to the shifted fractional-order Jacobi orthogonal function. Spectral collocation techniques are addressed to solve the multidimensional distributed-order diffusion equations (MDODEs). A mixed of shifted Jacobi polynomials and shifted fractional order Jacobi orthogonal functions are used as basis functions to adapt the spatial and temporal discretizations, respectively. Based on the selected basis, a spectral collocation method is listed to approximate the MDODEs. By means of the selected basis functions, the given conditions are automatically satisfied. We conclude with the application of spectral collocation method for multi-dimensional distributed-order diffusion equations.


2021 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Cundi Han ◽  
Yiming Chen ◽  
Da-Yan Liu ◽  
Driss Boutat

This paper applies a numerical method of polynomial function approximation to the numerical analysis of variable fractional order viscoelastic rotating beam. First, the governing equation of the viscoelastic rotating beam is established based on the variable fractional model of the viscoelastic material. Second, shifted Bernstein polynomials and Legendre polynomials are used as basis functions to approximate the governing equation and the original equation is converted to matrix product form. Based on the configuration method, the matrix equation is further transformed into algebraic equations and numerical solutions of the governing equation are obtained directly in the time domain. Finally, the efficiency of the proposed algorithm is proved by analyzing the numerical solutions of the displacement of rotating beam under different loads.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
G. Panou ◽  
R. Korakitis

AbstractThe direct geodesic problem on an oblate spheroid is described as an initial value problem and is solved numerically using both geodetic and Cartesian coordinates. The geodesic equations are formulated by means of the theory of differential geometry. The initial value problem under consideration is reduced to a system of first-order ordinary differential equations, which is solved using a numerical method. The solution provides the coordinates and the azimuths at any point along the geodesic. The Clairaut constant is not used for the solution but it is computed, allowing to check the precision of the method. An extensive data set of geodesics is used, in order to evaluate the performance of the method in each coordinate system. The results for the direct geodesic problem are validated by comparison to Karney’s method. We conclude that a complete, stable, precise, accurate and fast solution of the problem in Cartesian coordinates is accomplished.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Mingxu Yi ◽  
Kangwen Sun ◽  
Jun Huang ◽  
Lifeng Wang

A numerical method based on the CAS wavelets is presented for the fractional integrodifferential equations of Bratu type. The CAS wavelets operational matrix of fractional order integration is derived. A truncated CAS wavelets series together with this operational matrix is utilized to reduce the fractional integrodifferential equations to a system of algebraic equations. The solution of this system gives the approximation solution for the truncated limited2k(2M+1). The convergence and error estimation of CAS wavelets are also given. Two examples are included to demonstrate the validity and applicability of the approach.


2018 ◽  
Vol 36 (4) ◽  
pp. 33-54 ◽  
Author(s):  
Kourosh Parand ◽  
Mehdi Delkhosh

In this paper, a new approximate method for solving of systems of nonlinear Volterra integro-differential equations of arbitrary (integer and fractional) order is introduced. For this purpose, the generalized fractional order of the Chebyshev orthogonal functions (GFCFs) based on the classical Chebyshev polynomials of the first kind has been introduced that can be used to obtain the solution of the integro-differential equations (IDEs). Also, we construct the fractional derivative operational matrix of order $\alpha$ in the Caputo's definition for GFCFs. This method reduced a system of IDEs by collocation method into a system of algebraic equations. Some examples to illustrate the simplicity and the effectiveness of the propose method have been presented.


Sign in / Sign up

Export Citation Format

Share Document