Effects of the Third (Aqueous) Extract of Ginseng on the Cardiovascular Dynamics of Dogs During Halothane Anesthesia

1978 ◽  
Vol 06 (03) ◽  
pp. 253-259
Author(s):  
DONALD H. CLIFFORD ◽  
DO CHIL LEE ◽  
CHONG YUL KIM ◽  
MYUNG O. LEE

An electromagnetic flowmeter probe was chronically implanted around the ascending aorta in a group of dogs. Subsequently, ten dogs were lightly anesthetized with halothane (0.75%), and a third (aqueous) extract of ginseng (40 mg/kg) was administered intravenously. Five dogs were anesthesized without the administration of ginseng. Eleven cardiovascular variables including cardiac output, stroke volume, heart rate, mean arterial pressure, pulse pressure, central venous pressure, total peripheral resistance, pH, PaCO2, PaO2, and base deficit were compared. The cardiac output, stroke volume, and central venous pressure were decreased significantly, while total peripheral resistance was increased significantly following ginseng.

1978 ◽  
Vol 06 (02) ◽  
pp. 115-121 ◽  
Author(s):  
MYUNG O. LEE ◽  
DONALD H. CLIFFORD ◽  
CHONG YUL KIM ◽  
DO CHIL LEE

An electromagnetic flowmeter probe was chronically implanted around the ascending aorta in ten dogs. Subsequently, these animals were maintained under halothane (0.75%) anesthesia during the intravenous administration of an ether extract (40 mg/kg) of ginseng. Five other dogs were anesthesized without injecting ginseng. Eleven cardiovascular variables including cardiac output, stroke volume, heart rate, mean arterial pressure, pulse pressure, central venous pressure, total peripheral resistance, pH, PaCO, PaO and base deficit were compared during tthe ensuing 120 minutes. The heart rate was significantly decreased and central venous pressure increased significantly following ginseng. There were no other meaningful changes in either group.


1993 ◽  
Vol 74 (4) ◽  
pp. 1684-1688 ◽  
Author(s):  
B. T. Engel ◽  
M. I. Talan ◽  
P. H. Chew

We compared the nocturnal hemodynamic patterns of seven tethered monkeys (Macaca mulatta) with those of seven chaired animals to determine whether the overnight changes are comparable in the two conditions. In both groups, we found a consistent hemodynamic pattern characterized by an overnight fall in cardiac output and central venous pressure and a rise in total peripheral resistance that maintained blood pressure homeostasis. The pattern of overnight change occurred despite major differences in response levels: cardiac output and central venous pressure were significantly elevated, and total peripheral resistance was significantly reduced at all times (from 1800 to 1200 h the following day) in the chaired animals relative to the tethered animals. This difference was probably due to an expanded plasma volume in the chaired animals, because stroke volume was also significantly elevated. Because the nocturnal hemodynamic pattern occurred under both conditions, it is likely that it is a stable biologic effect, which is probably related to an overnight loss in fluid volume that is not replaced in animals that sleep throughout the night.


1975 ◽  
Vol 03 (03) ◽  
pp. 245-261 ◽  
Author(s):  
Do Chil Lee ◽  
Myung O. Lee ◽  
Donald H. Clifford

The cardiovascular effects of moxibustion at Jen Chung (Go-26) in 10 dogs under halothane anesthesia were compared to 5 dogs under halothane anesthesia without moxibustion and 5 dogs under halothane anesthesia in which moxibustion was effected at a neutral or non-acupuncture site. Cardiac output, stroke volume, heart rate, mean arterial pressure, central venous pressure, total peripheral resistance, pH, PaCO2, PaO2 and base deficit were measured over a two-hour period. A significant increase in cardiac output and stroke volume and a significant decrease in the total peripheral resistance were observed in the group which was stimulated by moxibustion at Jen Chun (Go-26). Heart rate, mean arterial pressure and pulse pressure were significantly increase during the early part of the two-hour period in the same group. The cardiovascular effects of moxibustion at Jen Chung (Go-26) which were observed at the end of the two hours were also present in two dogs in which measurements were continued for two additional hours.


1998 ◽  
Vol 85 (2) ◽  
pp. 738-746 ◽  
Author(s):  
Ronald J. White ◽  
C. Gunnar Blomqvist

Early in spaceflight, an apparently paradoxical condition occurs in which, despite an externally visible headward fluid shift, measured central venous pressure is lower but stroke volume and cardiac output are higher, and heart rate is unchanged from reference measurements made before flight. This paper presents a set of studies in which a simple three-compartment, steady-state model of cardiovascular function is used, providing insight into the contributions made by the major mechanisms that could be responsible for these events. On the basis of these studies, we conclude that, during weightless spaceflight, the chest relaxes with a concomitant shape change that increases the volume of the closed chest cavity. This leads to a decrease in intrapleural pressure, ultimately causing a shift of blood into the vessels of the chest, increasing the transmural filling pressure of the heart, and decreasing the central venous pressure. The increase in the transmural filling pressure of the heart is responsible, through a Starling-type mechanism, for the observed increases in heart size, left ventricular end-diastolic volume, stroke volume, and cardiac output.


1988 ◽  
Vol 65 (2) ◽  
pp. 625-632 ◽  
Author(s):  
Y. M. Evans ◽  
J. N. Funk ◽  
J. B. Charles ◽  
D. C. Randall ◽  
C. F. Knapp

The effects of endurance training on vascular responsiveness to an alpha 1-agonist and the associated changes in baroreflex modulation of heart rate and vascular resistance were studied. Graded dosages of phenylephrine were given to eight treadmill-trained dogs and to eight untrained dogs; both groups were chronically instrumented and were sedated and resting when tested. These dosages were repeated after ganglionic blockade. Aortic pressure, cardiac output, central venous pressure, peripheral resistance, and heart rate were each averaged over 30 s before injection and 90 s after injection. The slope of the peripheral resistance-dose relationship was significantly increased in trained compared with untrained dogs in both the unblocked and blocked cases [unblocked: trained 0.89, untrained 0.47; blocked: trained 4.30, untrained 2.05 (mmHg.l-1.min)/(microgram.kg-1)]. The unblocked resistance slopes were reduced with respect to the blocked slopes by 77 (untrained) and 79% (trained). The slope of the heart rate-aortic pressure response was reduced, but not significantly, by endurance training. We conclude that 6 wk of endurance training in dogs resulted in a doubling of the vascular responsiveness to an alpha 1-agonist, with no significant change in the baroreflex regulation of resistance or heart rate.


1992 ◽  
Vol 72 (5) ◽  
pp. 1798-1802 ◽  
Author(s):  
B. T. Engel ◽  
M. I. Talan ◽  
P. H. Chew

Heart rate (HR), stroke volume (SV), intra-arterial blood pressure, and central venous pressure were recorded on a beat-to-beat basis, 18 h/day (1800–1200 h the following day), for approximately 2 mo in four monkeys (Macaca mulatta). Cardiac output, left ventricular work, and total peripheral resistance were derived from these primary measurements. During the 1st mo we measured these parameters under control conditions, and during the 2nd mo the animals were studied while HR was paced by atrial demand pacing sufficient to prevent the normal nocturnal fall in HR (approximately 10 beats/min above the fastest hourly average rate recorded during the control condition). The main hypothesis of this study was that when HR is prevented from falling, SV, which normally does not fall overnight, would fall; this hypothesis was confirmed. In addition, we observed that, during the period of pacing, relative to the control period, SV was approximately 14% greater during the early evening and 4% lower during the early morning; total peripheral resistance was similar during the early evening but was 13% higher by morning. Throughout the night, systolic pressure was approximately 4% greater, diastolic pressure was 17% higher, central venous pressure was 43% greater, and left ventricular work was 27% higher. These findings show that when HR is prevented from falling overnight by atrial demand pacing, even to a relatively modest degree, there can be very significant sustained changes in cardiovascular function.


1959 ◽  
Vol 58 (2) ◽  
pp. 204-213 ◽  
Author(s):  
J.Norman Berry ◽  
Howard K. Thompson ◽  
D.Edmond Miller ◽  
Henry D. McIntosh

2017 ◽  
Vol 312 (1) ◽  
pp. R31-R39 ◽  
Author(s):  
Jeroen Brijs ◽  
Erik Sandblom ◽  
Esmée Dekens ◽  
Joacim Näslund ◽  
Andreas Ekström ◽  
...  

Substantial increases in cardiac output (CO), stroke volume (SV), and gastrointestinal blood flow are essential for euryhaline rainbow trout ( Oncorhyncus mykiss) osmoregulation in seawater. However, the underlying hemodynamic mechanisms responsible for these changes are unknown. By examining a range of circulatory and cardiac morphological variables of seawater- and freshwater-acclimated rainbow trout, the present study revealed a significantly higher central venous pressure (CVP) in seawater-acclimated trout (~0.09 vs. −0.02 kPa). This serves to increase cardiac end-diastolic volume in seawater and explains the elevations in SV (~0.41 vs. 0.27 ml/kg) and CO (~21.5 vs. 14.2 ml·min−1·kg−1) when compared with trout in freshwater. Furthermore, these hemodynamic modifications coincided with a significant increase in the proportion of compact myocardium, which may be necessary to compensate for the increased wall tension associated with a larger stroke volume. Following a temperature increase from 10 to 16.5°C, both acclimation groups exhibited similar increases in heart rate (Q10 of ~2), but SV tended to decrease in seawater-acclimated trout despite the fact that CVP was maintained in both groups. This resulted in CO of seawater- and freshwater-acclimated trout stabilizing at a similar level after warming (~26 ml·min−1·kg−1). The consistently higher CVP of seawater-acclimated trout suggests that factors other than compromised cardiac filling constrained the SV and CO of these individuals at high temperatures. The present study highlights, for the first time, the complex interacting effects of temperature and water salinity on cardiovascular responses in a euryhaline fish species.


1988 ◽  
Vol 254 (4) ◽  
pp. H811-H815 ◽  
Author(s):  
D. G. Parkes ◽  
J. P. Coghlan ◽  
J. G. McDougall ◽  
B. A. Scoggins

The hemodynamic and metabolic effects of long-term (5 day) infusion of human atrial natriuretic factor (ANF) were examined in conscious chronically instrumented sheep. Infusion of ANF at 20 micrograms/h, a rate below the threshold for an acute natriuretic effect, decreased blood pressure by 9 +/- 1 mmHg on day 5, associated with a fall in calculated total peripheral resistance. On day 1, ANF reduced cardiac output, stroke volume, and blood volume, effects that were associated with an increase in heart rate and calculated total peripheral resistance and a small decrease in blood pressure. On days 4 and 5 there was a small increase in urine volume and sodium excretion. On day 5 an increase in water intake and body weight was observed. No change was seen in plasma concentrations of renin, arginine vasopressin, glucose, adrenocorticotropic hormone, or protein. This study suggests that the short-term hypotensive effect of ANF results from a reduction in cardiac output associated with a fall in both stroke volume and effective blood volume. However, after 5 days of infusion, ANF lowers blood pressure via a reduction in total peripheral resistance.


Sign in / Sign up

Export Citation Format

Share Document