Anti-Inflammatory Effect of Buddleja officinalis on Vascular Inflammation in Human Umbilical Vein Endothelial Cells

2010 ◽  
Vol 38 (03) ◽  
pp. 585-598 ◽  
Author(s):  
Yun Jung Lee ◽  
Mi Kyoung Moon ◽  
Sun Mi Hwang ◽  
Jung Joo Yoon ◽  
So Min Lee ◽  
...  

Vascular inflammation process has been suggested to be an important risk factor in the initiation and development of atherosclerosis. In this study, we investigated whether and by what mechanisms an aqueous extract of Buddleja officinalis (ABO) inhibited the expressions of cellular adhesion molecules, which are relevant to inflammation and atherosclerosis. Pretreatment of human umbilical vein endothelial cells (HUVEC) with ABO (1–10 μg/ml) for 18 hours dose-dependently inhibited TNF-α-induced adhesion U937 monocytic cells, as well as mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1), and intercellular cell adhesion molecule-1 (ICAM-1). Pretreatment with ABO also blocked TNF-α-induced ROS formation. Nuclear factor-kappa B (NF-κB) is required in the transcription of these adhesion molecule genes. Western blot analysis revealed that ABO inhibits the translocation of the p65 subunit of NF-κB to the nucleus. ABO inhibited the TNF-α-induced degradation of IκB-α, an inhibitor of NF-κB, by inhibiting the phosphorylation of IκB-α in HUVEC. Taken together, ABO could reduce cytokine-induced endothelial adhesiveness throughout down-regulating intracellular ROS production, NF-κB, and adhesion molecule expression in HUVEC, suggesting that the natural herb Buddleja officinalis may have potential implications in atherosclerosis.

2019 ◽  
Vol 20 (21) ◽  
pp. 5383 ◽  
Author(s):  
Li Zhang ◽  
Feifei Wang ◽  
Qing Zhang ◽  
Qiuming Liang ◽  
Shumei Wang ◽  
...  

Inflammation is a key mediator in the progression of atherosclerosis (AS). Benzoinum, a resin secreted from the bark of Styrax tonkinensis, has been widely used as a form of traditional Chinese medicine in clinical settings to enhance cardiovascular function, but the active components of the resin responsible for those pharmaceutical effects remain unclear. To better clarify these components, a new phenylpropane derivative termed stybenpropol A was isolated from benzoinum and characterized via comprehensive spectra a nalysis. We further assessed how this phenylpropane derivative affected treatment of human umbilical vein endothelial cells (HUVECs) with tumor necrosis factor-α (TNF-α). Our results revealed that stybenpropol A reduced soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), interleukin-8 (IL-8), and interleukin-1β (IL-1β) expression by ELISA, inhibited apoptosis, and accelerated nitric oxide (NO) release in TNF-α-treated HUVECs. We further found that stybenpropol A decreased VCAM-1, ICAM-1, Bax, and caspase-9 protein levels, and increased the protein levels of Bcl-2, IKK-β, and IκB-α. This study identified a new, natural phenylpropane derivative of benzoinum, and is the first to reveal its cytoprotective effects in the context of TNF-α-treated HUVECs via regulation of the NF-κB and caspase-9 signaling pathways.


2009 ◽  
Vol 37 (02) ◽  
pp. 395-406 ◽  
Author(s):  
Sun Mi Hwang ◽  
Yun Jung Lee ◽  
Dae Gill Kang ◽  
Ho Sub Lee

Vascular inflammation is a pivotal factor of a variety of diseases, such as atherosclerosis and tumor progression. The present study was designed to examine the anti-inflammatory effect of ethanol extract of Gastrodia elata rhizome (EGE) in primary cultured human umbilical vein endothelial cells (HUVEC). Pretreatment of cells with EGE attenuated TNF-α-induced increase in expression levels of cell adhesion molecules such as intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Real time qRT-PCR also showed that EGE decreased the mRNA expression levels of ICAM-1, VCAM-1, E-selectin as well as macrophage chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8). In addition, EGE significantly inhibited TNF-α-induced increase in monocyte adhesion of HUVEC in a dose-dependent manner. Furthermore, EGE significantly inhibited TNF-α-induced intracellular reactive oxygen species (ROS) production and p65 NF-κB activation by preventing IκB-α phosphorylation. In conclusion, the present data suggest that EGE could suppress TNF-α-induced vascular inflammatory process via inhibition of oxidative stress and NF-κB activation in HUVEC.


2013 ◽  
Vol 41 (03) ◽  
pp. 473-485 ◽  
Author(s):  
Gang Hu ◽  
Jiang Liu ◽  
Yong-Zhan Zhen ◽  
Jie Wei ◽  
Yue Qiao ◽  
...  

Reducing the expression of endothelial cell adhesion molecules (ECAMs) is known to decrease inflammation-induced vascular complications. In this study, we explored whether rhein can reduce the inflammation-induced expression of ECAMs in human umbilical vein endothelial cells (HUVECs) with or without lipopolysaccharide (LPS) stimulation. HUVECs were treated with different concentrations of rhein with or without 2.5 μg/ml LPS stimulation. Cell viability was assayed using the MTT method. Real-time PCR and Western blot analysis were used to measure the transcription and expression levels of ECAMs, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-SELECTIN and related signaling proteins. The results indicated that rhein (0–20 μmol/L) and LPS (0–10 μg/ml) had no effect on the viability of HUVECs. LPS could promote the expression of VCAM-1, ICAM-1 and E-SELECTIN. Rhein appeared to target VCAM-1, ICAM-1 and E-SELECTIN, with the transcription and expression of all three factors being reduced by the rhein treatment (10 and 20 μmol/L). The transcription and expression of VCAM-1 were also reduced by treatment with rhein (10 and 20 μmol/L) in the presence of LPS stimulation. In conclusion, rhein treatment reduced the expression of VCAM-1 in HUVECs via a p38-dependent pathway.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3448
Author(s):  
Byung Hyuk Han ◽  
Chun Ho Song ◽  
Jung Joo Yoon ◽  
Hye Yoom Kim ◽  
Chang Seob Seo ◽  
...  

Securiniga suffruticosa is known as a drug that has the effect of improving the blood circulation and relaxing muscles and tendons, thereby protects and strengthen kidney and spleen. Therefore, in this study, treatment of Securiniga suffruticosa showed protective effect of inhibiting the vascular inflammation in human umbilical vein endothelial cells (HUVECs) by inducing nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) coupling pathway. In this study, Securiniga suffruticosa suppressed TNF-α (Tumor necrosis factor–α) induced protein and mRNA levels of cell adhesion molecules such as intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and Interleukin-6 (IL-6). Pretreatment of HUVEC with Securiniga suffruticosa decreased the adhesion of HL-60 cells to Ox-LDL (Oxidized Low-Density-Lipoprotein)-induced HUVEC. Moreover, Securiniga suffruticosa inhibited TNF-α induced intracellular reactive oxygen species (ROS) production. Securiniga suffruticosa also inhibited phosphorylation of IκB-α in cytoplasm and translocation of NF-κB (Nuclear factor-kappa B) p65 to the nucleus. Securiniga suffruticosa increased NO production, as well increased the phosphorylation of eNOS and Akt (protein kinase B) which are related with NO production. In addition, Securiniga suffruticosa increased the protein expression of GTPCH (Guanosine triphosphate cyclohydrolase Ⅰ) and the production of BH4 in HUVEC which are related with eNOS coupling pathway. In conclusion, Securiniga suffruticosa has a protective effect against vascular inflammation and can be a potential therapeutic agent for early atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document