EFFECT OF COSMIC STRING IN SPHERICALLY SYMMETRIC BLACK HOLE ON THE DIRAC PERTURBATION

2010 ◽  
Vol 25 (02) ◽  
pp. 111-124 ◽  
Author(s):  
R. SINI ◽  
NIJO VARGHESE ◽  
V. C. KURIAKOSE

The effect of cosmic string on the quasinormal modes (QNMs) of massless Dirac field perturbations were studied in different black hole spacetimes. Quasi-normal mode frequencies of massless Dirac field in Schwarzschild, RN extremal, SdS and near extremal SdS black hole spacetimes with cosmic string are obtained using WKB approximation. Our study shows a clear deviation in QNMs due to presence of cosmic string from those in the absence of string. The influence of cosmic string coded in the form of an increase in the oscillation frequency and damping time of QNMs.

2009 ◽  
Vol 24 (25) ◽  
pp. 2025-2037 ◽  
Author(s):  
R. SINI ◽  
V. C. KURIAKOSE

We evaluate quasinormal mode frequencies for RN black hole spacetimes with cosmic string perturbed by a massless Dirac field, using Pöschl–Teller potential method. We find that only in the case of RN black hole having small charge, the effect due to cosmic string will dominate when perturbed by a negatively charged Dirac field, but if we are perturbing with positively charged Dirac field decay will be less in the case of black hole having cosmic string compared to the RN black hole without string.


2019 ◽  
Vol 20 (9) ◽  
pp. 3059-3090 ◽  
Author(s):  
João L. Costa ◽  
José Natário ◽  
Pedro Oliveira

2017 ◽  
Vol 942 ◽  
pp. 012007 ◽  
Author(s):  
Mariafelicia De Laurentis ◽  
Ziri Younsi ◽  
Oliver Porth ◽  
Yosuke Mizuno ◽  
Christian Fromm ◽  
...  

2018 ◽  
Vol 97 (10) ◽  
Author(s):  
Mariafelicia De Laurentis ◽  
Ziri Younsi ◽  
Oliver Porth ◽  
Yosuke Mizuno ◽  
Luciano Rezzolla

Author(s):  
Zonghai Li ◽  
Guodong Zhang ◽  
Ali Övgün

The purpose of this paper is twofold. First, we introduce a geometric approach to study the circular orbit of a particle in static and spherically symmetric spacetime based on Jacobi metric. Second, we apply the circular orbit to study the weak gravitational deflection of null and time-like particles based on Gauss-Bonnet theorem. By this way, we obtain an expression of deflection angle and extend the study of deflection angle to asymptotically non-flat black hole spacetimes. Some black holes as lens are considered such as a static and spherically symmetric black hole in the conformal Weyl gravity and a Schwarzschild-like black hole in bumblebee gravity. Our results are consistent with the previous literature. In particular, we find that the connection between Gaussian curvature and the radius of a circular orbit greatly simplifies the calculation.


Sign in / Sign up

Export Citation Format

Share Document