HAWKING RADIATION VIA TUNNELING OF MASSIVE PARTICLES FROM A GRAVITY'S RAINBOW

2010 ◽  
Vol 25 (38) ◽  
pp. 3229-3240 ◽  
Author(s):  
CHENG-ZHOU LIU

In the tunneling framework of Hawking radiation, the quantum tunneling of massive particles in the modified Schwarzschild black holes from gravity's rainbow is investigated. While the massive particle tunneling from the event horizon, the metric fluctuation is taken into account, not only due to energy conservation but also to the Planck scale effect of spacetime. The obtained results show that, the emission rate is related to changes of the black hole's quantum corrected entropies before and after the emission. This implies that, considering the quantum effect of spacetime, information conservation of black holes is probable. Meanwhile, the quantum corrected entropy of the modified black hole is obtained and the leading correction behave as log-area type. And that, the emission spectrum with Planck scale correction is obtained and it deviates from the thermal spectrum.

2018 ◽  
Vol 27 (05) ◽  
pp. 1850053 ◽  
Author(s):  
Mir Faizal ◽  
R. G. G. Amorim ◽  
S. C. Ulhoa

Motivated by the energy-dependent metric in gravity’s rainbow, we will propose a new kind of energy-dependent noncommutative geometry. It will be demonstrated that like gravity’s rainbow, this new noncommutative geometry is described by an energy-dependent metric. We will analyze the effect of this noncommutative deformation on the Schwarzschild black holes and Kerr black holes. We will perform our analysis by relating the commutative and this new energy-dependent noncommutative metrics using an energy-dependent Moyal star product. We will also analyze the thermodynamics of these new noncommutative black hole solutions. We will explicitly derive expression for the corrected entropy and temperature for these black hole solutions. It will be demonstrated that, for these deformed solutions, black remnants cannot form. This is because these corrections increase rather than reduce the temperature of the black holes.


2019 ◽  
Vol 938 ◽  
pp. 388-415 ◽  
Author(s):  
S. Panahiyan ◽  
S.H. Hendi ◽  
N. Riazi

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Yang Bai ◽  
Joshua Berger ◽  
Mrunal Korwar ◽  
Nicholas Orlofsky

Abstract Magnetically charged black holes (MBHs) are interesting solutions of the Standard Model and general relativity. They may possess a “hairy” electroweak-symmetric corona outside the event horizon, which speeds up their Hawking radiation and leads them to become nearly extremal on short timescales. Their masses could range from the Planck scale up to the Earth mass. We study various methods to search for primordially produced MBHs and estimate the upper limits on their abundance. We revisit the Parker bound on magnetic monopoles and show that it can be extended by several orders of magnitude using the large-scale coherent magnetic fields in Andromeda. This sets a mass-independent constraint that MBHs have an abundance less than 4 × 10−4 times that of dark matter. MBHs can also be captured in astrophysical systems like the Sun, the Earth, or neutron stars. There, they can become non-extremal either from merging with an oppositely charged MBH or absorbing nucleons. The resulting Hawking radiation can be detected as neutri- nos, photons, or heat. High-energy neutrino searches in particular can set a stronger bound than the Parker bound for some MBH masses, down to an abundance 10−7 of dark matter.


2019 ◽  
Vol 97 (5) ◽  
pp. 558-561
Author(s):  
Faizan Bhat ◽  
Mussadiq H. Qureshi ◽  
Manzoor A. Malik ◽  
Asif Iqbal

In this paper, we generalize the formalism of gravity’s rainbow to complex space–time. The resulting geometry depends on the energy of the probe in such a way that the usual real manifold is the low energy approximation of the Planck scale geometry of space–time. So, our formalism agrees with all the observational data about our space–time being real, as at the scale these experiments are preformed, the imaginary part of the geometry is suppressed by Planck energy. However, the imaginary part of the geometry becomes important near the Planck energy, and so it cannot be neglected near the Planck scale. So, the Planck scale geometry of space–time is described by a complex manifold.


2015 ◽  
Vol 109 (2) ◽  
pp. 20001 ◽  
Author(s):  
Ahmed Farag Ali ◽  
Mir Faizal ◽  
Barun Majumder

2017 ◽  
Vol 95 (8) ◽  
Author(s):  
S. H. Hendi ◽  
S. Panahiyan ◽  
S. Upadhyay ◽  
B. Eslam Panah

Sign in / Sign up

Export Citation Format

Share Document