scholarly journals Black holes thermodynamics in a new kind of noncommutative geometry

2018 ◽  
Vol 27 (05) ◽  
pp. 1850053 ◽  
Author(s):  
Mir Faizal ◽  
R. G. G. Amorim ◽  
S. C. Ulhoa

Motivated by the energy-dependent metric in gravity’s rainbow, we will propose a new kind of energy-dependent noncommutative geometry. It will be demonstrated that like gravity’s rainbow, this new noncommutative geometry is described by an energy-dependent metric. We will analyze the effect of this noncommutative deformation on the Schwarzschild black holes and Kerr black holes. We will perform our analysis by relating the commutative and this new energy-dependent noncommutative metrics using an energy-dependent Moyal star product. We will also analyze the thermodynamics of these new noncommutative black hole solutions. We will explicitly derive expression for the corrected entropy and temperature for these black hole solutions. It will be demonstrated that, for these deformed solutions, black remnants cannot form. This is because these corrections increase rather than reduce the temperature of the black holes.

2010 ◽  
Vol 25 (38) ◽  
pp. 3229-3240 ◽  
Author(s):  
CHENG-ZHOU LIU

In the tunneling framework of Hawking radiation, the quantum tunneling of massive particles in the modified Schwarzschild black holes from gravity's rainbow is investigated. While the massive particle tunneling from the event horizon, the metric fluctuation is taken into account, not only due to energy conservation but also to the Planck scale effect of spacetime. The obtained results show that, the emission rate is related to changes of the black hole's quantum corrected entropies before and after the emission. This implies that, considering the quantum effect of spacetime, information conservation of black holes is probable. Meanwhile, the quantum corrected entropy of the modified black hole is obtained and the leading correction behave as log-area type. And that, the emission spectrum with Planck scale correction is obtained and it deviates from the thermal spectrum.


2017 ◽  
Vol 32 (15) ◽  
pp. 1750076 ◽  
Author(s):  
Salwa Alsaleh

In this paper, we deform the thermodynamics of a BTZ black hole from rainbow functions in gravity’s rainbow. The rainbow functions will be motivated from the results in loop quantum gravity and noncommutative geometry. It will be observed that the thermodynamics gets deformed due to these rainbow functions, indicating the existence of a remnant. However, the Gibbs free energy does not get deformed due to these rainbow functions, and so the critical behavior from Gibbs does not change by this deformation. This is because the deformation in the entropy cancels out the temperature deformation.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Andres Anabalon ◽  
Dumitru Astefanesei ◽  
Antonio Gallerati ◽  
Mario Trigiante

Abstract In this article we study a family of four-dimensional, $$ \mathcal{N} $$ N = 2 supergravity theories that interpolates between all the single dilaton truncations of the SO(8) gauged $$ \mathcal{N} $$ N = 8 supergravity. In this infinitely many theories characterized by two real numbers — the interpolation parameter and the dyonic “angle” of the gauging — we construct non-extremal electrically or magnetically charged black hole solutions and their supersymmetric limits. All the supersymmetric black holes have non-singular horizons with spherical, hyperbolic or planar topology. Some of these supersymmetric and non-extremal black holes are new examples in the $$ \mathcal{N} $$ N = 8 theory that do not belong to the STU model. We compute the asymptotic charges, thermodynamics and boundary conditions of these black holes and show that all of them, except one, introduce a triple trace deformation in the dual theory.


2018 ◽  
Vol 27 (11) ◽  
pp. 1843009 ◽  
Author(s):  
Carlos A. R. Herdeiro ◽  
Eugen Radu

We obtain spinning boson star solutions and hairy black holes with synchronized hair in the Einstein–Klein–Gordon model, wherein the scalar field is massive, complex and with a nonminimal coupling to the Ricci scalar. The existence of these hairy black holes in this model provides yet another manifestation of the universality of the synchronization mechanism to endow spinning black holes with hair. We study the variation of the physical properties of the boson stars and hairy black holes with the coupling parameter between the scalar field and the curvature, showing that they are, qualitatively, identical to those in the minimally coupled case. By discussing the conformal transformation to the Einstein frame, we argue that the solutions herein provide new rotating boson star and hairy black hole solutions in the minimally coupled theory, with a particular potential, and that no spherically symmetric hairy black hole solutions exist in the nonminimally coupled theory, under a condition of conformal regularity.


2019 ◽  
Vol 938 ◽  
pp. 388-415 ◽  
Author(s):  
S. Panahiyan ◽  
S.H. Hendi ◽  
N. Riazi

2016 ◽  
Vol 94 (6) ◽  
Author(s):  
Jun Tao ◽  
Peng Wang ◽  
Haitang Yang

2020 ◽  
pp. 312-336
Author(s):  
Piotr T. Chruściel

In this chapter we review what is known about dynamical black hole-solutions of Einstein equations. We discuss the Robinson–Trautman black holes, with or without a cosmological constant. We review the Cauchy-data approach to the construction of black-hole spacetimes. We propose some alternative approaches to a meaningful definition of black hole in a dynamical spacetime, and we review the nonlinear stability results for black-hole solutions of vacuum Einstein equations.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Tong-Tong Hu ◽  
Shuo Sun ◽  
Hong-Bo Li ◽  
Yong-Qiang Wang

Abstract Motivated by the recent studies of the novel asymptotically global $$\hbox {AdS}_4$$AdS4 black hole with deformed horizon, we consider the action of Einstein–Maxwell gravity in AdS spacetime and construct the charged deforming AdS black holes with differential boundary. In contrast to deforming black hole without charge, there exists at least one value of horizon for an arbitrary temperature. The extremum of temperature is determined by charge q and divides the range of temperature into several parts. Moreover, we use an isometric embedding in the three-dimensional space to investigate the horizon geometry. The entropy and quasinormal modes of deforming charged AdS black hole are also studied in this paper. Due to the existence of charge q, the phase diagram of entropy is more complicated. We consider two cases of solutions: (1) fixing the chemical potential $$\mu $$μ; (2) changing the value of $$\mu $$μ according to the values of horizon radius and charge. In the first case, it is interesting to find there exist two families of black hole solutions with different horizon radii for a fixed temperature, but these two black holes have same horizon geometry and entropy. The second case ensures that deforming charged AdS black hole solutions can reduce to standard RN–AdS black holes.


Sign in / Sign up

Export Citation Format

Share Document