scholarly journals Axionic dark matter halos in the gravitational field of baryonic matter

2020 ◽  
Vol 35 (26) ◽  
pp. 2050248
Author(s):  
Gennady P. Berman ◽  
Vyacheslav N. Gorshkov ◽  
Vladimir I. Tsifrinovich

We consider a dark matter halo (DMH) of a spherical galaxy as a Bose–Einstein condensate (BEC) of the ultra-light axions (ULA) interacting with the baryonic matter. In the mean-field (MF) limit, we have derived the integro-differential equation of the Hartree–Fock type for the spherically symmetrical wave function of the DMH component. This equation includes two independent dimensionless parameters: (i) [Formula: see text] is the ratio of baryon and axion total mases and (ii) [Formula: see text] is the ratio of characteristic baryon and axion spatial parameters. We extended our “dissipation algorithm” for studying numerically the ground state of the axion halo in the gravitational field produced by the baryonic component. We calculated the characteristic size, [Formula: see text] of DMH as a function of [Formula: see text] and [Formula: see text] and obtained an analytical approximation for [Formula: see text].

2020 ◽  
Vol 35 (26) ◽  
pp. 2050227 ◽  
Author(s):  
Gennady P. Berman ◽  
Vyacheslav N. Gorshkov ◽  
Vladimir I. Tsifrinovich ◽  
Marco Merkli ◽  
Vladimir V. Tereshchuk

We consider a two-component dark matter halo (DMH) of a galaxy containing ultra-light axions (ULA) of different mass. The DMH is described as a Bose–Einstein condensate (BEC) in its ground state. In the mean-field (MF) limit, we have derived the integro-differential equations for the spherically symmetrical wave functions of the two DMH components. We studied, numerically, the radial distribution of the mass density of ULA and constructed the parameters which could be used to distinguish between the two- and one-component DMH. We also discuss an interesting connection between the BEC ground state of a one-component DMH and Black Hole temperature and entropy, and Unruh temperature.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950361 ◽  
Author(s):  
Gennady P. Berman ◽  
Vyacheslav N. Gorshkov ◽  
Vladimir I. Tsifrinovich ◽  
Marco Merkli ◽  
Xidi Wang

We suggest that the dark matter halo in some of the spiral galaxies can be described as the ground state of the Bose–Einstein condensate of ultra-light self-gravitating axions. We have also developed an effective “dissipative” algorithm for the solution of nonlinear integro-differential Schrödinger equation describing self-gravitating Bose–Einstein condensate. The mass of an ultra-light axion is estimated.


2021 ◽  
Vol 240 (1) ◽  
pp. 383-417
Author(s):  
Nikolai Leopold ◽  
David Mitrouskas ◽  
Robert Seiringer

AbstractWe consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.


2018 ◽  
Vol 617 ◽  
pp. A142 ◽  
Author(s):  
S. Sarkar ◽  
C. J. Jog

We study the vertical stellar distribution of the Milky Way thin disk in detail with particular focus on the outer disk. We treat the galactic disk as a gravitationally coupled, three-component system consisting of stars, atomic hydrogen gas, and molecular hydrogen gas in the gravitational field of the dark matter halo. The self-consistent vertical distribution for stars and gas in such a realistic system is obtained for radii between 4–22 kpc. The inclusion of an additional gravitating component constrains the vertical stellar distribution toward the mid-plane, so that the mid-plane density is higher, the disk thickness is reduced, and the vertical density profile is steeper than in the one-component, isothermal, stars-alone case. We show that the stellar distribution is constrained mainly by the gravitational field of gas and dark matter halo in the inner and the outer Galaxy, respectively. We find that the thickness of the stellar disk (measured as the half-width at half-maximum of the vertical density distribution) increases with radius, flaring steeply beyond R = 17 kpc. The disk thickness is reduced by a factor of 3–4 in the outer Galaxy as a result of the gravitational field of the halo, which may help the disk resist distortion at large radii. The disk would flare even more if the effect of dark matter halo were not taken into account. Thus it is crucially important to include the effect of the dark matter halo when determining the vertical structure and dynamics of a galactic disk in the outer region.


Sign in / Sign up

Export Citation Format

Share Document