characteristic size
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 93)

H-INDEX

31
(FIVE YEARS 5)

2022 ◽  
Vol 24 (4) ◽  
pp. 53-62
Author(s):  
Alexey S. Belov

The experimental results of the extremely low frequency emission characteristics excited in the outer ionosphere under the ionospheric plasma heating by high-latitude EISCAT facility are presented. The experiments have been conducted in the period of 20062010 yr. using two main schemes of extremely low frequency generation including the impact of the heating facility amplitude modulated emission and two unmodulated pump waves with the frequency detuning. In-situ measurements of the plasma wave disturbances were performed at the outer ionosphere heights using on-board equipment of DEMETER microsatellite. In work the spatial, amplitude and spectral characteristics of the generated extremely low frequency emissions are determined. It is shown that the characteristic size of the extremely low frequency emission is about 400600 km along the trajectory of the DEMETER microsatellite. The registration area spatial position is determined by both the applied generation scheme and the background plasma density distribution. The extremely low frequency emission electric field strength at the Earths outer ionosphere heights is 50330 V/m.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 62
Author(s):  
Gaojian Hu ◽  
Gang Ma ◽  
Jie Liu ◽  
Kuan Qi

The number of parallel joints has an impact on the size effect of the uniaxial compressive strength and characteristic strength of a rock; however, the relationships between them are yet to be derived. We studied the influence of the number of joints and rock size on the uniaxial compressive strength of the rock. This study established ten numerical simulation programs using numerical simulations and the RFPA software. Stress–strain curves of different numbers of parallel joints and sizes of rocks were analyzed. Relationships between the uniaxial compressive strength and number of parallel joints and rock size were proposed, and their special functions were obtained. Mathematical models between rock characteristic size, rock characteristic strength and the number of parallel joints were established. Simulations of the verification program confirmed that these relationships are still applicable after the angle of parallel joints changes.


2021 ◽  
Vol 9 (12) ◽  
pp. 1388
Author(s):  
Alessandro Capone ◽  
Fabio Di Felice ◽  
Francisco Alves Pereira

A turbulent channel flow laden with elongated, fiber-like particles is investigated experimentally by optical techniques. The flow-particle inter-coupling is analyzed in the case of particles with an aspect ratio of 40 and 80, at two volume fractions, 10−5 and 10−4. An image processing technique is presented, which is employed to simultaneously obtain carrier flow velocimetry data and distribution and orientation data of dispersed particles. Turbulence enhancement is reported in the near-wall region, with a higher level of increase associated with higher aspect ratio particles. Comparison to fiber data suggests that this mechanism of turbulence modulation stems from a particles orientational behavior. The preferential particle distribution is reported to be dependent on the aspect ratio in the region close to the wall. The probability density function of the fibers’ orientation angle appears to be independent of the particle aspect ratio once it is conditioned to the fibers’ characteristic size.


2021 ◽  
Author(s):  
Aleksandr Y. Ukhorskiy ◽  
Kareem A. Sorathia ◽  
Viacheslav G. Merkin ◽  
Chris Crabtree ◽  
Alex C. Fletcher ◽  
...  

Abstract Plasma convection in the Earth’s magnetosphere from the distant magnetotail to the inner magnetosphere occurs largely in the form of mesoscale flows, i.e., discrete enhancements in the plasma flow with sharp dipolarizations of magnetic field. Recent spacecraft observations suggest that the dipolarization flows are associated with a wide range of kinetic processes such as kinetic Alfvén waves, whistler chorus waves, and nonlinear time-domain structures. In this paper we explore how mesoscale dipolarization flows produce suprathermal electron instabilities, thus providing free energy for the generation of the observed kinetic waves and structures. We employ three-dimensional test-particle simulations of electron dynamics one-way-coupled to a global magnetospheric model. The simulations show a rapid growth of interchanging regions of parallel and perpendicular electron temperature anisotropies distributed along the magnetic terrain formed around the dipolarization flows. Unencumbered in test-particle simulations, a rapid growth of velocity-space anisotropies in the collisionless magnetotail plasma is expected to be curbed by the generation of plasma waves. The results are compared with in situ observations of an isolated dipolarization flow at one of the spacecraft of the Magnetospheric Multiscale Mission, that show strong VLF wave activity alternating between broad-band wave activity and whistler waves. With estimated spatial extent being similar to the characteristic size of temperature anisotropy patches in our test-particle simulations, the observed bursts of VLF wave activity are likely to be produced by the parallel and perpendicular electron energy anisotropies driven by the dipolarization flow, as suggested by our results.


2021 ◽  
Vol 64 (5) ◽  
pp. 33-37
Author(s):  
Ivan Vladanov ◽  

Background: Transurethral resection of the bladder is one of the essential methods in the diagnosis, treatment and management of non-muscularinvasive bladder cancer. The purpose of the procedure is to remove completely all visually detected tumors with a following establishment of a very precise histological diagnosis. The aim of the study is to compare the results of conventional transurethral endoscopic treatment and the En-bloc resection method using different types of energy sources in the treatment of bladder tumors. Material and methods: A total number of 88 patients underwent endourological interventions. Regarding the distribution, 23 patients had conventional transurethral resection, 22 – En-bloc monopolar resection, 21 – En-bloc bipolar resection and 22 – En-bloc with Thu:YAG laser. Clinical data, intraoperative and postoperative data and also the histopathological examination results were compared. Results: The compared groups were heterogeneous by age, sex, tumor characteristic (size, number, location). No significant differences were observed during the operations, comparing the intraoperative and postoperative complications of the studied groups. The detrusor musculature was detected in 74% of cases after conventional transurethral resection, in 91% of cases of En-bloc monopolar resection, in 95% of cases of En-bloc bipolar resection and in 96% of cases of En-bloc Thu:YAG laser. Conclusions: The En-bloc resection technique of non-muscular-invasive bladder tumors is a safe and effective method comparing with the conventional transurethral resection; it allows more favorable postoperative results and obtaining better quality tumor samples which allow establishing correct diagnosis of the disease.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Charles Maldarelli ◽  
Nicole T. Donovan ◽  
Subramaniam Chembai Ganesh ◽  
Subhabrata Das ◽  
Joel Koplik

Colloid-sized particles (10 nm–10 μm in characteristic size) adsorb onto fluid interfaces, where they minimize their interfacial energy by straddling the surface, immersing themselves partly in each phase bounding the interface. The energy minimum achieved by relocation to the surface can be orders of magnitude greater than the thermal energy, effectively trapping the particles into monolayers, allowing them freedom only to translate and rotate along the surface. Particles adsorbed at interfaces are models for the understanding of the dynamics and assembly of particles in two dimensions and have broad technological applications, importantly in foam and emulsion science and in the bottom-up fabrication of new materials based on their monolayer assemblies. In this review, the hydrodynamics of the colloid motion along the surface is examined from both continuum and molecular dynamics frameworks. The interfacial energies of adsorbed particles is discussed first, followed by the hydrodynamics, starting with isolated particles followed by pairwise and multiple particle interactions. The effect of particle shape is emphasized, and the role played by the immersion depth and the surface rheology is discussed; experiments illustrating the applicability of the hydrodynamic studies are also examined. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 14 (11) ◽  
pp. 7243-7254
Author(s):  
Kamil Mroz ◽  
Alessandro Battaglia ◽  
Cuong Nguyen ◽  
Andrew Heymsfield ◽  
Alain Protat ◽  
...  

Abstract. An algorithm based on triple-frequency (X, Ka, W) radar measurements that retrieves the size, water content and degree of riming of ice clouds is presented. This study exploits the potential of multi-frequency radar measurements to provide information on bulk snow density that should underpin better estimates of the snow characteristic size and content within the radar volume. The algorithm is based on Bayes' rule with riming parameterised by the “fill-in” model. The radar reflectivities are simulated with a range of scattering models corresponding to realistic snowflake shapes. The algorithm is tested on multi-frequency radar data collected during the ESA-funded Radar Snow Experiment For Future Precipitation Mission. During this campaign, in situ microphysical probes were mounted on the same aeroplane as the radars. This nearly perfectly co-located dataset of the remote and in situ measurements gives an opportunity to derive a combined multi-instrument estimate of snow microphysical properties that is used for a rigorous validation of the radar retrieval. Results suggest that the triple-frequency retrieval performs well in estimating ice water content (IWC) and mean mass-weighted diameters obtaining root-mean-square errors of 0.13 and 0.15, respectively, for log 10IWC and log 10Dm. The retrieval of the degree of riming is more challenging, and only the algorithm that uses Doppler information obtains results that are highly correlated with the in situ data.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012097
Author(s):  
A Yu Ivanov ◽  
A L Sitkevich ◽  
S V Vasil’ev

Abstract Evolution of plasma plume generation on the surface of metal irradiated by laser beam with the mean radiation flux density ~ 106 W/cm2 in the external electric field with different polarity and field strength from 0 to 106 V/m was experimentally investigated. It is shown that the mean size of metal droplets carried out from the irradiated zone of target becomes materially (in several times) smaller when of the external electric field strength amplitude grow, independently to its polarity. It is essential that the mentioned differences (at the considered parameters of laser radiation) are observed only at the initial stage of the laser plume development, because after the steam-plasma cloud reaches the electrode an electric breakdown (short-circuit) occurs, and the external field in the interelectrode gap disappears. Electric breakdown leads to the spasmodic increase of electron density and temperature of plasma and to effective absorption of laser radiation by plasma torch (shielding of the target). In consequence of shielding droplets generation happens only during electric field existence. This explains decrease by several times of the characteristic size of the target substance droplets in spite of short duration of electric field existence.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022051
Author(s):  
I Nedrygailov ◽  
N I Chernova ◽  
I V Osliakova

Abstract Hydrogen is a promising fuel for energy storage, transportation, production and consumption. At the same time, hydrogen in its pure form is not found on Earth in large quantities and therefore it is necessary to develop a technology for its production. One of the promising technologies for hydrogen production is the reaction of aluminum nanoparticles with water. At the same time, experimental studies of the elementary mechanisms of this reaction are difficult due to the aggressive properties of a concentrated alkaline solution, which is used to activate the aluminum surface. Here we show that the kinetics of the aluminum-water reaction can be monitored in real time using a Schottky nanodiode sensor, provided that the characteristic size of the nanodiode electrodes does not exceed 10 nm. The investigated nanoparticles are applied to the sensor surface by means of nanofabrication. The charge generated in the aluminum nanoparticles as a result of the reaction creates an electrical signal that is proportional to the rate of the chemical process. This makes it possible to use this technology to study the activity even of small groups of nanoparticles, when the volume of released hydrogen is insufficient to measure the reaction rate.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012028
Author(s):  
K N Telikova ◽  
P S Shternin ◽  
S A Balashev

Abstract We investigate evolution of physical parameters of the intergalactic medium using an analysis of Lya forest lines detected towards distant quasars. We used the enlarged sample of 98 quasars obtained with Keck/HIRES and VLT/UVES. We show that taking into account a finite spatial size of absorbers, regulated by pressure smoothing, significantly affects the inferred thermal parameters of the intergalactic gas, such as the hydrogen photoionization rate and parameters of the temperature-density relation. Using Bayesian framework we constrained for the first time the scale parameter between the Jeans length and characteristic size of the absorbers. We also discuss limitations of the method based on the analysis of the minimal broadending of Lya lines, which stem from the patchy nature of He II reionization.


Sign in / Sign up

Export Citation Format

Share Document