THREE-POINT CORRELATION FUNCTIONS OF THE MINIMAL CONFORMAL THEORIES COUPLED TO 2D GRAVITY

1991 ◽  
Vol 06 (39) ◽  
pp. 3601-3612 ◽  
Author(s):  
Vl. S. DOTSENKO

The general three-point correlation functions of the minimal conformal field theories coupled to gravity are calculated using the specific Coulomb gas type quantization technique. The gravity interaction modifies in an essential way the operator algebra of the corresponding minimal model, in particular in canceling the decoupling of a finite number of primary fields, in case of rational theories. This is suggested to be related to the appearance of new physical states, under the BRST analysis of Lian and Zuckerman. Within the analytic technique, this effect is due to the corresponding singularities of the gravity sector operator algebra structure constants.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Sylvain Ribault

We investigate exactly solvable two-dimensional conformal field theories that exist at generic values of the central charge, and that interpolate between A-series or D-series minimal models. When the central charge becomes rational, correlation functions of these CFTs may tend to correlation functions of minimal models, or diverge, or have finite limits which can be logarithmic. These results are based on analytic relations between four-point structure constants and residues of conformal blocks.



1997 ◽  
Vol 12 (21) ◽  
pp. 3723-3738 ◽  
Author(s):  
A. Shafiekhani ◽  
M. R. Rahimi Tabar

It is shown explicitly that the correlation functions of conformal field theories (CFT) with the logarithmic operators are invariant under the differential realization of Borel subalgebra of [Formula: see text]-algebra. This algebra is constructed by tensor-operator algebra of differential representation of ordinary [Formula: see text]. This method allows us to write differential equations which can be used to find general expression for three- and four-point correlation functions possessing logarithmic operators. The operator product expansion (OPE) coefficients of general logarithmic CFT are given up to third level.



2003 ◽  
Vol 18 (25) ◽  
pp. 4747-4770 ◽  
Author(s):  
S. MOGHIMI-ARAGHI ◽  
S. ROUHANI ◽  
M. SAADAT

We show that logarithmic conformal field theories may be derived using nilpotent scale transformation. Using such nilpotent weights we derive properties of LCFT's, such as two and three point correlation functions solely from symmetry arguments. Singular vectors and the Kac determinant may also be obtained using these nilpotent variables, hence the structure of the four point functions can also be derived. This leads to non homogeneous hypergeometric functions. Also we consider LCFT's near a boundary. Constructing "superfields" using a nilpotent variable, we show that the superfield of conformal weight zero, composed of the identity and the pseudo identity is related to a superfield of conformal dimension two, which comprises of energy momentum tensor and its logarithmic partner. This device also allows us to derive the operator product expansion for logarithmic operators. Finally we discuss the AdS/LCFT correspondence and derive some correlation functions and a BRST symmetry.



1991 ◽  
Vol 06 (25) ◽  
pp. 2271-2279 ◽  
Author(s):  
YOSHIAKI TANII ◽  
SHUN-ICHI YAMAGUCHI

We compute a class of four-point correlation functions of physical operators on a sphere in the unitary minimal conformal field theories coupled to 2-dimensional gravity. We use the continuum Liouville field theory approach and they are obtained as integrals over the moduli (positions of the operators). We examine the integrands near the boundaries of the moduli space and compare their singular behaviors with the operator product expansion.





1990 ◽  
Vol 05 (12) ◽  
pp. 2343-2358 ◽  
Author(s):  
KEKE LI

A method of constructing critical (fixed point) Landau-Ginzburg action from operator algebra is applied to several classes of conformal field theories, including lines of c = 1 models and the coset models based on SU(2) current algebra. For the c = 1 models, the Landau-Ginzberg potential is argued to be physically consistent, and it resembles a modality-one singularity with modal deformation representing exactly the marginal deformation. The potentials for the coset models manifestly possess correct discrete symmetries.







2020 ◽  
Vol 35 (22) ◽  
pp. 2050186
Author(s):  
Jnanadeva Maharana

We investigate analyticity properties of correlation functions in conformal field theories (CFTs) in the Wightman formulation. The goal is to determine domain of holomorphy of permuted Wightman functions. We focus on crossing property of three-point functions. The domain of holomorphy of a pair of three-point functions is determined by appealing to Jost’s theorem and by adopting the technique of analytic completion. This program paves the way to address the issue of crossing for the four-point functions on a rigorous footing.



Sign in / Sign up

Export Citation Format

Share Document