Structure constants for rational conformal field theories

1988 ◽  
Vol 215 (1) ◽  
pp. 124-128 ◽  
Author(s):  
P. Di Francesco
2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Sylvain Ribault

We investigate exactly solvable two-dimensional conformal field theories that exist at generic values of the central charge, and that interpolate between A-series or D-series minimal models. When the central charge becomes rational, correlation functions of these CFTs may tend to correlation functions of minimal models, or diverge, or have finite limits which can be logarithmic. These results are based on analytic relations between four-point structure constants and residues of conformal blocks.


1994 ◽  
Vol 09 (02) ◽  
pp. 133-141 ◽  
Author(s):  
MICHAEL TERHOEVEN

Recently dilogarithm identities have made their appearance in the physics literature. These identities seem to allow to calculate structure constants like, in particular, the effective central charge of certain conformal field theories from their fusion rules. In Ref. 12 a proof of identities of this type was given by considering the asymptotics of character functions in the so-called Rogers-Ramanujan sum form and comparing with the asymptotics predicted by modular covariance. Refining the argument, we obtain the general connection of quantum dimensions of certain conformal field theories to the arguments of the dilogarithm function in the identities in question and an infinite set of consistency conditions on the parameters of Rogers-Ramanujan type partitions for them to be modular covariant.


2013 ◽  
Vol 94 (108) ◽  
pp. 169-180
Author(s):  
Elaine Beltaos

The affine Kac-Moody algebras give rise to rational conformal field theories (RCFTs) called the Wess-Zumino-Witten (WZW) models. An important component of an RCFT is its fusion ring, whose structure constants are given by the associated S-matrix. We apply a fixed point property possessed by the WZW models ("fixed point factorization") to calculate nonnegative integer matrix representations of the fusion ring, allowing for the calculation of D-brane charges in string theory.


1991 ◽  
Vol 06 (39) ◽  
pp. 3601-3612 ◽  
Author(s):  
Vl. S. DOTSENKO

The general three-point correlation functions of the minimal conformal field theories coupled to gravity are calculated using the specific Coulomb gas type quantization technique. The gravity interaction modifies in an essential way the operator algebra of the corresponding minimal model, in particular in canceling the decoupling of a finite number of primary fields, in case of rational theories. This is suggested to be related to the appearance of new physical states, under the BRST analysis of Lian and Zuckerman. Within the analytic technique, this effect is due to the corresponding singularities of the gravity sector operator algebra structure constants.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Enrico M. Brehm

Abstract We investigate perturbatively tractable deformations of topological defects in two-dimensional conformal field theories. We perturbatively compute the change in the g-factor, the reflectivity, and the entanglement entropy of the conformal defect at the end of these short RG flows. We also give instances of such flows in the diagonal Virasoro and Super-Virasoro Minimal Models.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hugo A. Camargo ◽  
Lucas Hackl ◽  
Michal P. Heller ◽  
Alexander Jahn ◽  
Tadashi Takayanagi ◽  
...  

2000 ◽  
Vol 15 (30) ◽  
pp. 4857-4870 ◽  
Author(s):  
D. C. CABRA ◽  
E. FRADKIN ◽  
G. L. ROSSINI ◽  
F. A. SCHAPOSNIK

We propose an effective Lagrangian for the low energy theory of the Pfaffian states of the fractional quantum Hall effect in the bulk in terms of non-Abelian Chern–Simons (CS) actions. Our approach exploits the connection between the topological Chern–Simons theory and chiral conformal field theories. This construction can be used to describe a large class of non-Abelian FQH states.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Nishant Gupta ◽  
Nemani V. Suryanarayana

Abstract We construct classical theories for scalar fields in arbitrary Carroll spacetimes that are invariant under Carrollian diffeomorphisms and Weyl transformations. When the local symmetries are gauge fixed these theories become Carrollian conformal field theories. We show that generically there are at least two types of such theories: one in which only time derivatives of the fields appear and the other in which both space and time derivatives appear. A classification of such scalar field theories in three (and higher) dimensions up to two derivative order is provided. We show that only a special case of our theories arises in the ultra-relativistic limit of a covariant parent theory.


Sign in / Sign up

Export Citation Format

Share Document