MICE: The International Muon Ionisation Cooling Experiment

2005 ◽  
Vol 20 (16) ◽  
pp. 3843-3846
Author(s):  
◽  
Malcolm Ellis

Muon storage rings have been proposed for use as sources of intense high-energy neutrino beams and as the basis for multi-TeV lepton-antilepton colliding beam facilities. To optimise the performance of such facilities is likely to require the phase-space compression (cooling) of the muon beam prior to acceleration and storage. The short muon-lifetime makes it impossible to employ traditional techniques to cool the beam while maintaining the muon-beam intensity. Ionisation cooling, a process in which the muon beam is passed through a series of liquid hydrogen absorbers followed by accelerating RF-cavities, is the technique proposed to cool the muon beam. The international Muon Ionisation Cooling Experiment (MICE) collaboration has been formed to carry out a muon-cooling demonstration experiment, and its proposal to Rutherford Appleton Laboratory has been approved. The MICE cooling channel, the instrumentation and the implementation at the Rutherford Appleton Laboratory is described together with the predicted performance of the channel and the measurements that will be made.

2005 ◽  
Vol 20 (16) ◽  
pp. 3815-3819 ◽  
Author(s):  
◽  
Malcolm Ellis

The provision of intense stored muon beams would allow the properties of neutrinos to be measured precisely and provide a route to multi-TeV lepton-anti-lepton collisions. The short muon lifetime makes it impossible to employ traditional cooling techniques while maintaining the muon-beam intensity. Ionisation cooling, a process in which the muon beam is passed through a series of liquid hydrogen absorbers followed by accelerating RF-cavities, is the proposed cooling technique. The international Muon Ionisation Cooling Experiment (MICE) collaboration has been approved at the Rutherford Appleton Laboratory and proposes to perform an engineering demonstration of ionisation cooling. The MICE experiment will require the measurement of the momentum and position of muons entering and leaving a section of ionisation cooling channel with high precision and purity in the presence of a large background. The technology chosen to meet this challenge is scintillating fibres readout with Visible Light Photon Detectors. The design, construction and operation of a prototype detector is described, as well as a summary of ongoing research and development activities in preparation for supplying the trackers needed for the MICE experiment.


1969 ◽  
Vol 69 (1) ◽  
pp. 77-88 ◽  
Author(s):  
J. Cox ◽  
F. Martin ◽  
M.L. Perl ◽  
T.H. Tan ◽  
W.T. Toner ◽  
...  

2020 ◽  
Vol 125 (16) ◽  
Author(s):  
A. Antognini ◽  
N. J. Ayres ◽  
I. Belosevic ◽  
V. Bondar ◽  
A. Eggenberger ◽  
...  

Author(s):  
Shaohua Han ◽  
Zhongzhong Zhang ◽  
Pengxiang Ruan ◽  
Shiwen Cheng ◽  
Dingqi Xue

Additive manufacturing has been proven to be a promising technology for fabricating high-performance dies, molds, and conformal cooling channels. As one of the manufacturing methods, wire and arc additive manufacturing displays unique advantages of low cost and high deposition rate that are better than other high energy beam-based ones. This paper presents a preliminary study of fabricating integrated cooling channels by CMT-based wire and arc additive manufacturing process. The deposition strategies for fabricating circular cross-sectional cooling channels both in conformal and straight-line patterns have been investigated. It included optimizing the welding torch angle, fabricating the enclosed semicircle structure and predicting the collision between the torch and constructed part. The cooling effect test was also conducted on both the conformal cooling channel and straight-line cooling channel. The results affirmed a higher cooling efficiency and better uniform cooling effect of the conformal cooling channel than straight-line cooling channel.


2021 ◽  
Vol 13 (3) ◽  
pp. 1360
Author(s):  
Teodora M. Șoimoșan ◽  
Ligia M. Moga ◽  
Livia Anastasiu ◽  
Daniela L. Manea ◽  
Aurica Căzilă ◽  
...  

Harnessing renewable energy sources (RES) using hybrid systems for buildings is almost a deontological obligation for engineers and researchers in the energy field, and increasing the percentage of renewables within the energy mix represents an important target. In crowded urban areas, on-site energy production and storage from renewables can be a real challenge from a technical point of view. The main objectives of this paper are quantification of the impact of the consumer’s profile on overall energy efficiency for on-site storage and final use of solar thermal energy, as well as developing a multicriteria assessment in order to provide a methodology for selection in prioritizing investments. Buildings with various consumption profiles lead to achieving different values of performance indicators in similar configurations of storage and energy supply. In this regard, an analysis of the consumption profile’s impact on overall energy efficiency, achieved in the case of on-site generation and storage of solar thermal energy, was performed. The obtained results validate the following conclusion: On-site integration of solar systems allowed the consumers to use RES at the desired coverage rates, while restricted by on-site available mounting areas for solar fields and thermal storage, under conditions of high energy efficiencies. In order to segregate the results and support optimal selection, a multicriteria analysis was carried out, having as the main criteria the energy efficiency indicators achieved by hybrid heating systems.


Author(s):  
D. Bollini ◽  
P. L. Frabetti ◽  
G. Heiman ◽  
F. L. Navarria

2017 ◽  
Vol 129 (3) ◽  
pp. 1887-1897 ◽  
Author(s):  
Guo-ying Zhang ◽  
Jian-chao Liu ◽  
Nai-meng Song ◽  
Ying Liu ◽  
Li Yang

Sign in / Sign up

Export Citation Format

Share Document