scholarly journals How important is iϵ in QFT?

2015 ◽  
Vol 30 (14) ◽  
pp. 1550071
Author(s):  
Amir H. Fariborz ◽  
Renata Jora ◽  
Joseph Schechter

We discuss the role of iϵ in quantum field theories and suggest that it can be identified with the dimensional regularization parameter iϵ = 4-d thus clarifying and simplifying issues related to the infrared divergences without altering any of the present knowledge in QFT. We further present the relevance of this assumption for the optical theorem.

2021 ◽  
Vol 2105 (1) ◽  
pp. 012002
Author(s):  
Pascal Anastasopoulos

Abstract The present research proceeding aims at investigating/exploring/sharpening the phenomenological consequences of string theory and holography in particle physics and cosmology. We rely on and elaborate on the recently proposed framework whereby four-dimensional quantum field theories describe all interactions in Nature, and gravity is an emergent and not a fundamental force. New gauge fields, axions, and fermions, which can play the role of right-handed neutrinos, can also emerge in this framework. Preprint: UWThPh 2021-8


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Damiano Anselmi

Abstract We prove spectral optical identities in quantum field theories of physical particles (defined by the Feynman iϵ prescription) and purely virtual particles (defined by the fakeon prescription). The identities are derived by means of purely algebraic operations and hold for every (multi)threshold separately and for arbitrary frequencies. Their major significance is that they offer a deeper understanding on the problem of unitarity in quantum field theory. In particular, they apply to “skeleton” diagrams, before integrating on the space components of the loop momenta and the phase spaces. In turn, the skeleton diagrams obey a spectral optical theorem, which gives the usual optical theorem for amplitudes, once the integrals on the space components of the loop momenta and the phase spaces are restored. The fakeon prescription/projection is implemented by dropping the thresholds that involve fakeon frequencies. We give examples at one loop (bubble, triangle, box, pentagon and hexagon), two loops (triangle with “diagonal”, box with diagonal) and arbitrarily many loops. We also derive formulas for the loop integrals with fakeons and relate them to the known formulas for the loop integrals with physical particles.


1994 ◽  
Vol 09 (12) ◽  
pp. 1093-1103 ◽  
Author(s):  
PETER GRANDITS

We consider the finiteness conditions on the Yukawa couplings of a general quantum field theory for groups SU (N). Their gauge invariance leads us to the necessary structure of the couplings, and for some cases the nonexistence of non-trivial solutions is proved. Somewhat miraculously a special role of SU(5) emerges as a possible case of evading these no-go theorems.


Physics ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 425-435
Author(s):  
Zdzislaw E. Musielak ◽  
Lesley C. Vestal ◽  
Bao D. Tran ◽  
Timothy B. Watson

Novel gauge functions are introduced to non-relativistic classical mechanics and used to define forces. The obtained results show that the gauge functions directly affect the energy function and allow for converting an undriven physical system into a driven one. This is a novel phenomenon in dynamics that resembles the role of gauges in quantum field theories.


1985 ◽  
Vol 40 (7) ◽  
pp. 752-773
Author(s):  
H. Stumpf

Unified nonlinear spinorfield models are self-regularizing quantum field theories in which all observable (elementary and non-elementary) particles are assumed to be bound states of fermionic preon fields. Due to their large masses the preons themselves are confined and below the threshold of preon production the effective dynamics of the model is only concerned with bound state reactions. In preceding papers a functional energy representation, the statistical interpretation and the dynamical equations were derived and the effective dynamics for preon-antipreon boson states and three preon-fermion states (with corresponding anti-fermions) was studied in the low energy limit. The transformation of the functional energy representation of the spinorfield into composite particle functional operators produced a hierarchy of effective interactions at the composite particle level, the leading terms of which are identical with the functional energy representation of a phenomenological boson-fermion coupling theory. In this paper these calculations are extended into the high energy range. This leads to formfactors for the composite particle interaction terms which are calculated in a rough approximation and which in principle are observable. In addition, the mathematical and physical interpretation of nonlocal quantum field theories and the meaning of the mapping procedure, its relativistic invariance etc. are discussed.


2021 ◽  
Vol 111 (2) ◽  
Author(s):  
Marco Benini ◽  
Marco Perin ◽  
Alexander Schenkel ◽  
Lukas Woike

AbstractThis paper develops a concept of 2-categorical algebraic quantum field theories (2AQFTs) that assign locally presentable linear categories to spacetimes. It is proven that ordinary AQFTs embed as a coreflective full 2-subcategory into the 2-category of 2AQFTs. Examples of 2AQFTs that do not come from ordinary AQFTs via this embedding are constructed by a local gauging construction for finite groups, which admits a physical interpretation in terms of orbifold theories. A categorification of Fredenhagen’s universal algebra is developed and also computed for simple examples of 2AQFTs.


2010 ◽  
Vol 105 (25) ◽  
Author(s):  
Jutho Haegeman ◽  
J. Ignacio Cirac ◽  
Tobias J. Osborne ◽  
Henri Verschelde ◽  
Frank Verstraete

Sign in / Sign up

Export Citation Format

Share Document