Melting of quarkonium in an anisotropic hot QCD medium in the presence of a generalized Debye screening mass and Nikiforov–Uvarov’s method

2020 ◽  
Vol 35 (21) ◽  
pp. 2050110
Author(s):  
M. Abu-shady ◽  
H. M. Fath-Allah

Generalized temperature and anisotropy dependent Debye screening mass is introduced into the real part of a potential in an anisotropic plasma. The N-radial Schrödinger equation (SE) is approximately solved by using the Nikiforov–Uvarov (NU) method which based on the expansion of power series. Binding energies and dissociation temperatures of charmonium and bottomonium are calculated. In addition, we have calculated the screening mass values for different parameters. Comparing to their values in an isotropic medium, the charmonium and bottomonium binding energies within an anisotropic medium are found to be increased. Also, the dissociation temperatures of both the charmonium and the bottomonium within anisotropic environments appear larger relative to those found within an isotropic medium. Finally, one observes that in any medium the bottomonium dissociation temperature is higher than the charmonium one.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
M. Abu-Shady ◽  
H. M. Mansour ◽  
A. I. Ahmadov

In this paper, quarkonium dissociation is investigated in an anisotropic plasma in the hot and dense media. For that purpose, the multidimensional Schrödinger equation is solved analytically by Nikiforov-Uvarov (NU) method for the real part of the potential in an anisotropic medium. The binding energy and dissociation temperature are calculated. In comparison with an isotropic medium, the binding energy of quarkonium is enhanced in the presence of an anisotropic medium. The present results show that the dissociation temperature increases with increasing anisotropic parameter for 1S state of the charmonium and bottomonium. We observe that the lower baryonic chemical potential has small effect in both isotropic and anisotropic media. A comparison is presented with other pervious theoretical works.


2019 ◽  
Vol 34 (31) ◽  
pp. 1950201
Author(s):  
M. Abu-Shady

By using the conformable fractional of the Nikiforov–Uvarov (CF–NU) method, the radial Schrödinger equation is analytically solved. The energy eigenvalues and corresponding functions are obtained, in which the dependent temperature potential is employed. The effect of fraction-order parameter is studied on the heavy-quarkonium masses such as charmonium and bottomonium in a hot QCD medium in the 3D and the higher-dimensional space. This paper discusses the flavor dependence of their binding energies and explores the nature of dissociation by employing the perturbative, nonperturbative, and the lattice-parametrized form of the Debye masses in the medium-modified potential. A comparison is studied with recent works. We conclude that the fractional-order plays an important role in a hot QCD medium in the 3D with consideration of a form of the Debye mass.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. T331-T342
Author(s):  
Xing-Wang Li ◽  
Bing Zhou ◽  
Chao-Ying Bai ◽  
Jian-Lu Wu

In a viscoelastic anisotropic medium, velocity anisotropy and wave energy attenuation occur and are often observed in seismic data applications. Numerical investigation of seismic wave propagation in complex viscoelastic anisotropic media is very helpful in understanding seismic data and reconstructing subsurface structures. Seismic ray tracing is an effective means to study the propagation characteristics of high-frequency seismic waves. Unfortunately, most seismic ray-tracing methods and traveltime tomographic inversion algorithms only deal with elastic media and ignore the effect of viscoelasticity on the seismic raypath. We have developed a method to find the complex ray velocity that gives the seismic ray speed and attenuation in an arbitrary viscoelastic anisotropic medium, and we incorporate them with the modified shortest-path method to determine the raypath and calculate the real and imaginary traveltime (wave energy attenuation) simultaneously. We determine that the complex ray-tracing method is applicable to arbitrary 2D/3D viscoelastic anisotropic media in a complex geologic model and the computational errors of the real and imaginary traveltime are less than 0.36% and 0.59%, respectively. The numerical examples verify that the new method is an effective and powerful tool for accomplishing seismic complex ray tracing in heterogeneous viscoelastic anisotropic media.


Sign in / Sign up

Export Citation Format

Share Document