transient field
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 22)

H-INDEX

23
(FIVE YEARS 1)

Optica ◽  
2021 ◽  
Author(s):  
Marcel Neuhaus ◽  
Johannes Schötz ◽  
Mario Aulich ◽  
Anchit Srivastava ◽  
Dziugas Kimbaras ◽  
...  
Keyword(s):  

Author(s):  
Lezhi Ye ◽  
Yulong Zhang ◽  
Mingguang Cao

To solve the problem of complex operating device and permanent magnets (PMs) demagnetization at high temperature, a new type of permanent magnet fluxed-switching coupler (PMC) with synchronous rotating adjuster is proposed. Its torque can be adjusted by rotating a switched flux angle between the adjuster and PMs along the circumferential direction. The structural feature and working principle of the PMC are introduced. The analytical model of the novel PMC was established. The torque curves are calculated in transient field by using the three-dimensional finite element method (3-D FEM). The temperature distribution of the novel PMC under rated condition is calculated by 3-D FEM, and the temperature distribution of the PM is compared with that of the conventional PMC. The simulation and test results show that the maximum temperature of copper disc and PM of the novel PMC are 100 °C and 48 °C respectively. The novel PMC can work stably for a long time under the maximum load condition.


2021 ◽  
Vol 11 (20) ◽  
pp. 9435
Author(s):  
Ning Wang ◽  
Jiajia Chen ◽  
Huifang Wang ◽  
Shiyou Yang

In simulations of three-dimensional transient physics filled through a numerical approach, the order of the equation set of high-fidelity models is extremely high. To eliminate the large dimension of equations, a model order reduction (MOR) technique is introduced. In the existing MOR methods, the block Arnoldi algorithm-based MOR method is numerically stable, achieving a passively reduced order model. Nevertheless, this method performs poorly when it is applied to very wide-frequency transients. To eliminate this deficiency, multipoint MOR methods are emerging. However, it is hard to directly apply an existing multipoint MOR method to a 3-D transient field equation set. The implementation issues in a reduction process (such as the selection of expansion points, the number of moments matched at a point and the error bound) have not been explored in detail. In this respect, an adaptive multipoint model reduction model based on the Arnoldi algorithm is proposed to obtain the reduced-order models of a 3-D temperature field. The originality of this study is the proposal of a novel adaptive algorithm for selecting expansion points, matching moments automatically, using a posterior-error estimator based on temperature response coupled with a network topological method (NTM). The computational efficiency and accuracy of the proposed method are evaluated by the numerical results from solving the temperature field of a prototype insulated-gate bipolar transistor (IGBT).


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1314
Author(s):  
Cunxiang Yang ◽  
Yiwei Ding ◽  
Hongbo Qiu ◽  
Bin Xiong

The turn-to-turn faults (TTF) are also inevitable in split-winding transformers. The distorted leakage field generated by the TTF current results in large axial forces and end thrusts in the fault windings as well as affecting other branch windings normal operation, so it is of significance to study TTF of split-winding transformers. In this paper, the characteristics analysis of the split-winding transformer under the TTFs of the low voltage winding at different positions are presented. A 3600 KVA four split-windings transformer is taken as an example. Then, a simplified three-dimensional simplified model is established, taking into account the forces of the per-turn coil. The nonlinear-transient field-circuit coupled finite element method is used for the model. The leakage field distribution under the TTFs of the low voltage winding at different positions is studied. The resultant force of the short-circuit winding and the force of the per-turn coil are obtained. Subsequently, the force and current relationship between the branch windings are analyzed. The results show that the TTF at the specific location has a great influence on the axial windings on the same core, and the distorted leakage magnetic field will cause excessive axial force and end thrust of the normal and short-circuit windings. These results can provide a basis for the short-circuit design of split-winding transformer.


Author(s):  
Philipp Junker ◽  
Daniel Balzani

AbstractAn established strategy for material modeling is provided by energy-based principles such that evolution equations in terms of ordinary differential equations can be derived. However, there exist a variety of material models that also need to take into account non-local effects to capture microstructure evolution. In this case, the evolution of microstructure is described by a partial differential equation. In this contribution, we present how Hamilton’s principle provides a physically sound strategy for the derivation of transient field equations for all state variables. Therefore, we begin with a demonstration how Hamilton’s principle generalizes the principle of stationary action for rigid bodies. Furthermore, we show that the basic idea behind Hamilton’s principle is not restricted to isothermal mechanical processes. In contrast, we propose an extended Hamilton principle which is applicable to coupled problems and dissipative microstructure evolution. As example, we demonstrate how the field equations for all state variables for thermo-mechanically coupled problems, i.e., displacements, temperature, and internal variables, result from the stationarity of the extended Hamilton functional. The relation to other principles, as the principle of virtual work and Onsager’s principle, is given. Finally, exemplary material models demonstrate how to use the extended Hamilton principle for thermo-mechanically coupled elastic, gradient-enhanced, rate-dependent, and rate-independent materials.


Author(s):  
Pierre Graux ◽  
Jean-François Lalande ◽  
Valérie Viet Triem Tong ◽  
Pierre Wilke

2020 ◽  
Vol 18 ◽  
pp. 53-73
Author(s):  
Konstantin Pasche ◽  
Fabian Ossevorth ◽  
Ralf T. Jacobs

Abstract. Reverberation chambers show transient behaviour when excited with a pulsed signal. The field intensities can in this case be significantly higher than in steady state, which implies that a transient field can exceed predefined limits and render test results uncertain. Effects of excessive field intensities of short duration may get covered and not be observable in a statistical analysis of the field characteristics. In order to ensure that the signal reaches steady state, the duration of the pulse used to excite the chamber needs to be longer than the time constant of the chamber. Initial computations have shown that the pulse width should be about twice as long as the time constant of the chamber to ensure that steady state is reached. The signal is sampled in the time domain with a sampling frequency according to the Nyquist theorem. The bandwidth of the input signal is determined using spectral analysis. For a fixed stirrer position, the reverberation chamber, wires, connectors, and antennas can jointly be considered as a linear time-invariant system. In this article, a procedure will be presented to extract characteristic signal properties such as rise-time, transient overshoot and the mean value in steady state from the system response. The signal properties are determined by first computing the envelope of the sampled data using a Hilbert transform. Subsequent noise reduction is achieved applying a Savitzky–Golay filter. The point where steady state is reached is then computed from the slope of the envelope by utilising a cumulative histogram. The spectral analysis is not suitable to examine the transient behaviour and determine the time constants of the system. These constants are computed applying the method of Prony, which is based on the estimation of a number of parameters in a sum of exponential functions. An alternative to the Prony Method is the Time-Domain Vector-Fit method. In contrast to the first mentioned variant, it is now also possible to determine the transfer function of the overall RC system. Differences and advantages of the methods will be discussed.


Sign in / Sign up

Export Citation Format

Share Document