Effects of Cornell-type scalar potential on a generalized KG-oscillator field in Kaluza–Klein theory

2021 ◽  
Vol 36 (08n09) ◽  
pp. 2150053
Author(s):  
Faizuddin Ahmed

We study a generalized KG-oscillator in the five-dimensional cosmic string geometry background with a magnetic field and quantum flux using Kaluza–Klein theory under the effects of a Cornell-type scalar potential, and observe the gravitational analogue of the Aharonov–Bohm effect. We see that the scalar potential allows the formation of bound states solution, and the energy eigenvalue depends on the global parameter characterizing the space–time. We also see that the magnetic field depends on quantum numbers of the relativistic system which shows a quantum effect.

Author(s):  
Faizuddin Ahmed

In this paper, we solve KG-oscillator in the five-dimensional cosmic string space-time background with a uniform magnetic field and quantum flux subject to a scalar potential of Cornell-type using KaluzaKlein theory, and observe the gravitational analogue of the AharonovBohm effect. We show that the energy eigenvalue and eigenfunction depends on the global parameters of the space-time, and also a quantum effect is seen due to the dependence of magnetic field on the quantum numbers of the system


2020 ◽  
pp. 2150004
Author(s):  
Faizuddin Ahmed

In this paper, we study a relativistic quantum dynamics of spin-0 scalar particle interacts with scalar potential in the presence of a uniform magnetic field and quantum flux in background of Kaluza–Klein theory (KKT). We solve Klein–Gordon equation in the considered framework and analyze the relativistic analogue of the Aharonov–Bohm effect for bound states. We show that the energy levels depend on the global parameters characterizing the spacetime, scalar potential and the magnetic field which break their degeneracy.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Faizuddin Ahmed

In this paper, we solve a generalized Klein-Gordon oscillator in the cosmic string space-time with a scalar potential of Cornell-type within the Kaluza-Klein theory and obtain the relativistic energy eigenvalues and eigenfunctions. We extend this analysis by replacing the Cornell-type with Coulomb-type potential in the magnetic cosmic string space-time and analyze a relativistic analogue of the Aharonov-Bohm effect for bound states.


Author(s):  
Faizuddin Ahmed

In this paper, effects of Lorentz symmetry violation determined by a tensor field [Formula: see text] out of the Standard Model Extension on a modified quantum oscillator field in the presence of Cornell-type scalar potential are analyzed. We first introduced a scalar potential [Formula: see text] by modifying the mass square term via transformation [Formula: see text] in the Klein–Gordon equation, and then replace the momentum operator [Formula: see text], where [Formula: see text] is an arbitrary function other than [Formula: see text] to study the modified Klein–Gordon oscillator. We solve the wave equation and obtain the analytical bound-states solutions and see the dependence of oscillator frequency [Formula: see text] on the quantum numbers [Formula: see text] as well as on Lorentz-violating parameters with the potential which shows a quantum effect.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
E.V. B. Leite ◽  
H. Belich ◽  
R. L. L. Vitória

In this paper, we have investigated a scalar particle with position-dependent mass subject to a uniform magnetic field and a quantum flux, both coming from the background which is governed by the Kaluza-Klein theory. By modifying the mass term of the scalar particle, we insert the Cornell-type potential. In the search for solutions of bound states, we determine the relativistic energy profile of the system in this background of extra dimension. Particular cases of this system are analyzed and a quantum effect can be observed: the dependence of the magnetic field on the quantum numbers of the solutions.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
E. V. B. Leite ◽  
H. Belich ◽  
K. Bakke

Based on the Kaluza-Klein theory, we study the Aharonov-Bohm effect for bound states for a relativistic scalar particle subject to a Coulomb-type potential. We introduce this scalar potential as a modification of the mass term of the Klein-Gordon equation, and a magnetic flux through the line element of the Minkowski spacetime in five dimensions. Then, we obtain the relativistic bound states solutions and calculate the persistent currents.


Author(s):  
Faizuddin Ahmed

The non-inertial effects on spin-0 scalar particle that interacts with scalar potentials of Cornell-type in cylindrical system and Coulomb-type in the magnetic cosmic string space-time using Kaluza-Klein theory is analyzed. We show that the energy eigenvalue and eigenfunction depend on the global parameters characterizing the space-time, and the gravitational analogue of the Aharonov-Bohm effect for bound states is observed.


2000 ◽  
Vol 15 (01) ◽  
pp. 23-28 ◽  
Author(s):  
DANG VAN SOA ◽  
HOANG NGOC LONG

An attempt is made to present some experimental predictions of the five dimensions Kaluza–Klein theory. The conversion of photons into dilatons in the static magnetic fields are considered in detail. The differential cross-sections are presented for the conversions in a magnetic field of the flat condensor and a magnetic field of the solenoid. A numerical evaluation shows that in the present technical scenario, the creation of dilatons at high energies may have the observable value.


Sign in / Sign up

Export Citation Format

Share Document