THE FUNCTIONAL INTEGRAL ON THE HALF-LINE

1990 ◽  
Vol 05 (15) ◽  
pp. 3029-3051 ◽  
Author(s):  
EDWARD FARHI ◽  
SAM GUTMANN

A quantum Hamiltonian, defined on the half-line, will typically not lead to unitary time evolution unless the domain of the Hamiltonian is carefully specified. Different choices of the domain result in different Green’s functions. For a wide class of non-relativistic Hamiltonians we show how to define the functional integral on the half-line in a way which matches the various Green’s functions. To do so we analytically continue, in time, functional integrals constructed with real measures that give weight to paths on the half-line according to how much time they spend near the origin.


2003 ◽  
Vol 15 (09) ◽  
pp. 949-993 ◽  
Author(s):  
JOEL FELDMAN ◽  
HORST KNÖRRER ◽  
EUGENE TRUBOWITZ

We construct, using fermionic functional integrals, thermodynamic Green's functions for a weakly coupled fermion gas whose Fermi energy lies in a gap. Estimates on the Green's functions are obtained that are characteristic of the size of the gap. This prepares the way for the analysis of single scale renormalization group maps for a system of fermions at temperature zero without a gap.



Author(s):  
Guilherme Ramalho Costa ◽  
José Aguiar santos junior ◽  
José Ricardo Ferreira Oliveira ◽  
Jefferson Gomes do Nascimento ◽  
Gilmar Guimaraes


Sign in / Sign up

Export Citation Format

Share Document