scholarly journals MODULAR GROUPS FOR TWISTED NARAIN MODELS

1994 ◽  
Vol 09 (25) ◽  
pp. 4407-4429 ◽  
Author(s):  
JENS ERLER ◽  
MICHAŁ SPALIŃSKI

We demonstrate how to find modular discrete symmetry groups for ZN orbifolds. The Z7 orbifold is treated in detail as a nontrivial example of a (2, 2) orbifold model. We give the generators of the modular group for this case which, surprisingly, does not contain SL (2; Z)3 as had been speculated. The treatment models with discrete Wilson lines are also discussed. We consider examples which demonstrate that discrete Wilson lines affect the modular group in a nontrivial manner. In particular, we show that it is possible for a Wilson line to break SL (2, Z).

2020 ◽  
pp. 1-28
Author(s):  
Ruth Kellerhals

Abstract Higher dimensional analogues of the modular group $\mathit{PSL}(2,\mathbb{Z})$ are closely related to hyperbolic reflection groups and Coxeter polyhedra with big symmetry groups. In this context, we develop a theory and dissection properties of ideal hyperbolic $k$ -rectified regular polyhedra, which is of independent interest. As an application, we can identify the covolumes of the quaternionic modular groups with certain explicit rational multiples of the Riemann zeta value $\unicode[STIX]{x1D701}(3)$ .


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Magdalena Larfors ◽  
Davide Passaro ◽  
Robin Schneider

Abstract The systematic program of heterotic line bundle model building has resulted in a wealth of standard-like models (SLM) for particle physics. In this paper, we continue this work in the setting of generalised Complete Intersection Calabi Yau (gCICY) manifolds. Using the gCICYs constructed in ref. [1], we identify two geometries that, when combined with line bundle sums, are directly suitable for heterotic GUT models. We then show that these gCICYs admit freely acting ℤ2 symmetry groups, and are thus amenable to Wilson line breaking of the GUT gauge group to that of the standard model. We proceed to a systematic scan over line bundle sums over these geometries, that result in 99 and 33 SLMs, respectively. For the first class of models, our results may be compared to line bundle models on homotopically equivalent Complete Intersection Calabi Yau manifolds. This shows that the number of realistic configurations is of the same order of magnitude.


1995 ◽  
Vol 78 (5-6) ◽  
pp. 1195-1251 ◽  
Author(s):  
S. Boukraa ◽  
J. -M. Maillard ◽  
G. Rollet

2013 ◽  
Vol 24 (08) ◽  
pp. 1350065 ◽  
Author(s):  
BERNHARD HEIM ◽  
ATSUSHI MURASE

We show certain symmetries for Borcherds lifts on the Hilbert modular group over a real quadratic field. We give two different proofs, the one analytic and the other arithmetic. The latter proof yields an explicit description of the action of Hecke operators on Borcherds lifts.


1985 ◽  
Vol 27 ◽  
pp. 57-80 ◽  
Author(s):  
Karl-Bernhard Gundlach

The classical generalizations (already investigated in the second half of last century) of the modular group SL(2, ℤ) are the groups ГK = SL(2, o)(o the principal order of a totally real number field K, [K:ℚ]=n), operating, originally, on a product of n upper half-planes or, for n=2, on the product 1×− of an upper and a lower half-plane by(where v(i), for v∈K, denotes the jth conjugate of v), and Гn = Sp(n, ℤ), operating on n={Z∣Z=X+iY∈ℂ(n,n),tZ=Z, Y>0} byNowadays ГK is called Hilbert's modular group of K and Гn Siegel's modular group of degree (or genus) n. For n=1 we have Гℚ=Г1= SL(2, ℤ). The functions corresponding to modular forms and modular functions for SL(2, ℤ) and its subgroups are holomorphic (or meromorphic) functions with an invariance property of the formJ(L, t) for fixed L (or J(M, Z) for fixed M) denoting a holomorphic function without zeros on ) (or on n). A function J;, defined on ℤK×or ℤn×n to be able to appear in (1.3) with f≢0, has to satisfy certain functional equations (see below, (2.3)–(2.5) for ГK, (5.7)–(5.9) for Гn) and is called an automorphic factor (AF) then. In close analogy to the case n=1, mainly AFs of the following kind have been used:with a complex number r, the weight of J, and complex numbers v(L), v(M). AFs of this kind are called classical automorphic factors (CAP) in the sequel. If r∉ℤ, the values of the function v on ГK (or Гn) depend on the branch of (…)r. For a fixed choice of the branch (for each L∈ГK or M∈Гn) the functional equations for J, by (1.4), (1.5), correspond to functional equations for v. A function v satisfying those equations is called a multiplier system (MS) of weight r for ГK (or Гn).


1999 ◽  
Vol 51 (6) ◽  
pp. 1307-1336 ◽  
Author(s):  
Norman W. Johnson ◽  
Asia Ivić Weiss

AbstractMatrices whose entries belong to certain rings of algebraic integers can be associated with discrete groups of transformations of inversive n-space or hyperbolic (n+1)-space Hn+1. For small n, thesemay be Coxeter groups, generated by reflections, or certain subgroups whose generators include direct isometries of Hn+1. We show how linear fractional transformations over rings of rational and (real or imaginary) quadratic integers are related to the symmetry groups of regular tilings of the hyperbolic plane or 3-space. New light is shed on the properties of the rational modular group PSL2(), the Gaussian modular (Picard) group PSL2([i]), and the Eisenstein modular group PSL2([ω]).


Sign in / Sign up

Export Citation Format

Share Document