scholarly journals FROM LIGHT NUCLEI TO NUCLEAR MATTER: THE ROLE OF RELATIVITY?

2003 ◽  
Vol 17 (28) ◽  
pp. 5327-5333 ◽  
Author(s):  
F. COESTER

The success of non-relativistic quantum dynamics in accounting for the binding energies and spectra of light nuclei with masses up to A=10 raises the question whether the same dynamics applied to infinite nuclear matter agrees with the empirical saturation properties of large nuclei. The simple unambiguous relation between few-nucleon and many-nucleon Hamiltonians is directly related to the Galilean covariance of nonrelativistic dynamics. Relations between the irreducible unitary representations of the Galilei and Poincaré groups indicate that the "nonrelativistic" nuclear Hamiltonians may provide sufficiently accurate approximations to Poincaré invariant mass operators. In relativistic nuclear dynamics based on suitable Lagrangeans the intrinsic nucleon parity is an explicit, dynamically relevant, degree of freedom and the emphasis is on properties of nuclear matter. The success of this approach suggests the question how it might account for the spectral properties of light nuclei.

2019 ◽  
Vol 28 (06) ◽  
pp. 1950039
Author(s):  
K. Wang ◽  
A. Bonasera ◽  
H. Zheng ◽  
G. Q. Zhang ◽  
Y. G. Ma ◽  
...  

We implement the Heisenberg principle into the Constrained Molecular Dynamics model with a similar approach to the Pauli principle using the one-body occupation probability [Formula: see text]. Results of the modified and the original model with comparisons to data are given. The binding energies and the radii of light nuclei obtained with the modified model are more consistent with the experimental data than the original one. The collision term and the density distribution are tested through a comparison to p+[Formula: see text]C elastic scattering data. Some simulations for fragmentation and superheavy nuclei production are also discussed.


2003 ◽  
Vol 17 (28) ◽  
pp. 5151-5161
Author(s):  
W. H. DICKHOFF ◽  
E. P. ROTH

A brief overview is given of the properties of spectral functions in finite nuclei as obtained from ( e,e ′ p ) experiments. Based on recent experimental data from this reaction it is argued that the empirical value of the saturation density of nuclear matter is dominated by short-range correlations. This observation and the observed fragmentation and depletion of the single-particle strength in nuclei provide the motivation for attempting a self-consistent description of the nucleon spectral functions with full inclusion of short-range and tensor correlations in nuclear matter. Results for these "second generation" spectral functions will be discussed with emphasis on the consequences for the saturation properties of nuclear matter. Arguments are presented to clarify the obscuring role of pionic long-range correlations in this long-standing problem.


2016 ◽  
Vol 12 (1) ◽  
pp. 4172-4177
Author(s):  
Abdul Malek

The denial of the existence of contradiction is at the root of all idealism in epistemology and the cause for alienations.  This alienation has become a hindrance for the understanding of the nature and the historical evolution mathematics itself and its role as an instrument in the enquiry of the physical universe (1). A dialectical materialist approach incorporating  the role of the contradiction of the unity of the opposites, chance and necessity etc., can provide a proper understanding of the historical evolution of mathematics and  may ameliorate  the negative effect of the alienation in modern theoretical physics and cosmology. The dialectical view also offers a more plausible materialist interpretation of the bewildering wave-particle duality in quantum dynamics (2).


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohd. Afzal

A new complex (Ru(η6-p-cymene)(5-ASA)Cl2) (1) where 5-ASA is 5-aminosalicylic acid has been prepared by reacting the ruthenium arene precursors ((η6-arene)Ru(μ-Cl)Cl)2, with the 5-ASA ligands in a 1:1 ratio. Full characterization of complex 1 was accomplished by elemental analysis, IR, and TGA following the structure obtained from a single-crystal X-ray pattern. The structural analysis revealed that complex 1 shows a “piano-stool” geometry with Ru-C (2.160(5)- 2.208(5)Å), Ru-N (2.159(4) Å) distances, which is similar to equivalents sister complex. Density functional theory (DFT) was used to calculate the significant molecular orbital energy levels, binding energies, bond angles, bond lengths, and spectral data (FTIR, NMR, and UV–VIS) of complex 1, consistent with the experimental results. The IR and UV–VIS spectra of complex 1 were computed using all of the methods and choose the most appropriate way to discuss. Hirshfeld surface analysis was also executed to understand the role of weak interactions such as H⋯H, C⋯H, C-H⋯π, and vdW interactions, which play a significant role in the crystal environment’s stability. Moreover, the luminescence results at room temperature show that complex 1 gives a more intense emission band positioned at 465 nm upon excitation at 330 nm makes it a suitable candidate for the building of photoluminescent material.


1981 ◽  
Vol 24 (6) ◽  
pp. 1528-1542 ◽  
Author(s):  
L. P. Horwitz ◽  
F. Rohrlich

Sign in / Sign up

Export Citation Format

Share Document