SUPERFLUID TO BOSE METAL TRANSITION IN SYSTEMS WITH RESONANT PAIRING

2008 ◽  
Vol 22 (25n26) ◽  
pp. 4379-4385
Author(s):  
JULIUS RANNINGER

Experiments in thin films whose thickness can be modified and by this way induce a superconductor to insulator transition, seem to suggest that in the quantum critical regime of this phase transition there might be a Bose metal, i.e., uncondensed bosonic carriers with a finite dissipation. This poses a fundamental problem as to our understanding of how such a state could be justified. On the basis of a simple Boson-Fermion model, where bosonic and fermionic degrees of freedom are strongly inter-related via a Boson-Fermion pair exchange coupling g, we illustrate how such a bosonic metal phase could possibly come about. We show that, as we approach the quantum critical point at some critical gc from the superfluid side, the superfluid phase locking is sustained only for longer and longer spatial scales. On a finite spatial scale, the boson have a quasi-free itinerant behavior with metallic features. At the quantum critical point the systems exhibits a phase separation which shows a ressemblance to that of a He 3– He 4 mixture. This could be the clue to the apparent dilemma of a Bose metal at zero temperature.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
S. Chibani ◽  
D. Farina ◽  
P. Massat ◽  
M. Cazayous ◽  
A. Sacuto ◽  
...  

AbstractWe report the evolution of nematic fluctuations in FeSe1−xSx single crystals as a function of Sulfur content x across the nematic quantum critical point (QCP) xc ~ 0.17 via Raman scattering. The Raman spectra in the B1g nematic channel consist of two components, but only the low energy one displays clear fingerprints of critical behavior and is attributed to itinerant carriers. Curie–Weiss analysis of the associated nematic susceptibility indicates a substantial effect of nemato-elastic coupling, which shifts the location of the nematic QCP. We argue that this lattice-induced shift likely explains the absence of any enhancement of the superconducting transition temperature at the QCP. The presence of two components in the nematic fluctuations spectrum is attributed to the dual aspect of electronic degrees of freedom in Hund’s metals, with both itinerant carriers and local moments contributing to the nematic susceptibility.


2012 ◽  
Vol 85 (18) ◽  
Author(s):  
Tetsuya Iye ◽  
Yusuke Nakai ◽  
Shunsaku Kitagawa ◽  
Kenji Ishida ◽  
Shigeru Kasahara ◽  
...  

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Blaise Goutéraux ◽  
Eric Mefford

Abstract The low energy and finite temperature excitations of a d + 1-dimensional system exhibiting superfluidity are well described by a hydrodynamic model with two fluid flows: a normal flow and a superfluid flow. In the vicinity of a quantum critical point, thermodynamics and transport in the system are expected to be controlled by the critical exponents and by the spectrum of irrelevant deformations away from the quantum critical point. Here, using gauge-gravity duality, we present the low temperature dependence of thermodynamic and charge transport coefficients at first order in the hydrodynamic derivative expansion in terms of the critical exponents. Special attention will be paid to the behavior of the charge density of the normal flow in systems with emergent infrared conformal and Lifshitz symmetries, parameterized by a Lifshitz dynamical exponent z > 1. When 1 ≤ z < d + 2, we recover (z = 1) and extend (z > 1) previous results obtained by relativistic effective field theory techniques. Instead, when z > d + 2, we show that the normal charge density becomes non-vanishing at zero temperature. An extended appendix generalizes these results to systems that violate hyperscaling as well as systems with generalized photon masses. Our results clarify previous work in the holographic literature and have relevance to recent experimental measurements of the superfluid density on cuprate superconductors.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Sangyun Lee ◽  
Tae Beom Park ◽  
Jihyun Kim ◽  
Soon-Gil Jung ◽  
Won Kyung Seong ◽  
...  

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Li Xiang ◽  
Elena Gati ◽  
Sergey L. Bud'ko ◽  
Scott M. Saunders ◽  
Paul C. Canfield

2016 ◽  
Vol 25 (7) ◽  
pp. 077403
Author(s):  
Shan Cui ◽  
Lan-Po He ◽  
Xiao-Chen Hong ◽  
Xiang-De Zhu ◽  
Cedomir Petrovic ◽  
...  

2015 ◽  
Vol 115 (4) ◽  
Author(s):  
M. Taupin ◽  
G. Knebel ◽  
T. D. Matsuda ◽  
G. Lapertot ◽  
Y. Machida ◽  
...  

2007 ◽  
Vol 68 (11) ◽  
pp. 2119-2123 ◽  
Author(s):  
Y. Ihara ◽  
H. Takeya ◽  
K. Ishida ◽  
C. Michioka ◽  
K. Yoshimura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document