ANALYTIC ANALYSIS ON A GENERALIZED (2+1)-DIMENSIONAL VARIABLE-COEFFICIENT KORTEWEG–DE VRIES EQUATION USING SYMBOLIC COMPUTATION

2010 ◽  
Vol 24 (27) ◽  
pp. 5359-5370 ◽  
Author(s):  
CHENG ZHANG ◽  
BO TIAN ◽  
LI-LI LI ◽  
TAO XU

With the help of symbolic computation, a generalized (2+1)-dimensional variable-coefficient Korteweg–de Vries equation is studied for its Painlevé integrability. Then, Hirota bilinear form is derived, from which the one- and two-solitary-wave solutions with the corresponding graphic illustration are presented. Furthermore, a bilinear auto-Bäcklund transformation is constructed and the nonlinear superposition formula and Lax pair are also obtained. Finally, the analytic solution in the Wronskian form is constructed and proved by direct substitution into the bilinear equation.

2009 ◽  
Vol 23 (04) ◽  
pp. 571-584 ◽  
Author(s):  
JUAN LI ◽  
BO TIAN ◽  
XIANG-HUA MENG ◽  
TAO XU ◽  
CHUN-YI ZHANG ◽  
...  

In this paper, a generalized variable-coefficient Korteweg–de Vries (KdV) equation with the dissipative and/or perturbed/external-force terms is investigated, which arises in arterial mechanics, blood vessels, Bose gases of impenetrable bosons and trapped Bose–Einstein condensates. With the computerized symbolic computation, two variable-coefficient Miura transformations are constructed from such a model to the modified KdV equation under the corresponding constraints on the coefficient functions. Meanwhile, through these two transformations, a couple of auto-Bäcklund transformations, nonlinear superposition formulas and Lax pairs are obtained with the relevant constraints. Furthermore, the one- and two-solitonic solutions of this equation are explicitly presented and the physical properties and possible applications in some fields of these solitonic structures are discussed and pointed out.


2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Yanni Zhang ◽  
Jing Pang

Based on the Hirota bilinear form of the generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation, the lump and lump-type solutions are generated through symbolic computation, whose analyticity can be easily achieved by taking special choices of the involved parameters. The property of solutions is investigated and exhibited vividly by three-dimensional plots and contour plots.


2009 ◽  
Vol 23 (10) ◽  
pp. 2383-2393 ◽  
Author(s):  
LI-LI LI ◽  
BO TIAN ◽  
CHUN-YI ZHANG ◽  
HAI-QIANG ZHANG ◽  
JUAN LI ◽  
...  

In this paper, a nonisospectral and variable-coefficient Korteweg-de Vries equation is investigated based on the ideas of the variable-coefficient balancing-act method and Hirota method. Via symbolic computation, we obtain the analytic N-soliton solutions, variable-coefficient bilinear form, auto-Bäcklund transformations (in both the bilinear form and Lax pair form), Lax pair and nonlinear superposition formula for such an equation in explicit form. Moreover, some figures are plotted to analyze the effects of the variable coefficients on the stabilities and propagation characteristics of the solitonic waves.


2019 ◽  
Vol 33 (27) ◽  
pp. 1950319 ◽  
Author(s):  
Hongfei Tian ◽  
Jinting Ha ◽  
Huiqun Zhang

Based on the Hirota bilinear form, lump-type solutions, interaction solutions and periodic wave solutions of a (3[Formula: see text]+[Formula: see text]1)-dimensional Korteweg–de Vries (KdV) equation are obtained. The interaction between a lump-type soliton and a stripe soliton including two phenomena: fission and fusion, are illustrated. The dynamical behaviors are shown more intuitively by graphics.


2016 ◽  
Vol 30 (35) ◽  
pp. 1650318 ◽  
Author(s):  
Jun Chai ◽  
Bo Tian ◽  
Xi-Yang Xie ◽  
Han-Peng Chai

Investigation is given to a forced generalized variable-coefficient Korteweg–de Vries equation for the atmospheric blocking phenomenon. Applying the double-logarithmic and rational transformations, respectively, under certain variable-coefficient constraints, we get two different types of bilinear forms: (a) Based on the first type, the bilinear Bäcklund transformation (BT) is derived, the [Formula: see text]-soliton solutions in the Wronskian form are constructed, and the [Formula: see text]- and [Formula: see text]-soliton solutions are proved to satisfy the bilinear BT; (b) Based on the second type, via the Hirota method, the one- and two-soliton solutions are obtained. Those two types of solutions are different. Graphic analysis on the two types shows that the soliton velocity depends on [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], the soliton amplitude is merely related to [Formula: see text], and the background depends on [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] are the dissipative, dispersive, nonuniform and line-damping coefficients, respectively, and [Formula: see text] is the external-force term. We present some types of interactions between the two solitons, including the head-on and overtaking interactions, interactions between the velocity- and amplitude-unvarying two solitons, between the velocity-varying while amplitude-unvarying two solitons and between the velocity- and amplitude-varying two solitons, as well as the interactions occurring on the constant and varying backgrounds.


2010 ◽  
Vol 24 (10) ◽  
pp. 1023-1032 ◽  
Author(s):  
XIAO-GE XU ◽  
XIANG-HUA MENG ◽  
FU-WEI SUN ◽  
YI-TIAN GAO

Applicable in fluid dynamics and plasmas, a generalized variable-coefficient Korteweg–de Vries (vcKdV) equation is investigated analytically employing the Hirota bilinear method in this paper. The bilinear form for such a model is derived through a dependent variable transformation. Based on the bilinear form, the integrable properties such as the N-solitonic solution, the Bäcklund transformation and the Lax pair for the vcKdV equation are obtained. Additionally, it is shown that the bilinear Bäcklund transformation can turn into the one denoted in the original variables.


2008 ◽  
Vol 49 (4) ◽  
pp. 833-838 ◽  
Author(s):  
Zhang Ya-Xing ◽  
Zhang Hai-Qiang ◽  
Li Juan ◽  
Xu Tao ◽  
Zhang Chun-Yi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document