scholarly journals CLASSICAL, QUANTUM AND SUPERQUANTUM CORRELATIONS

2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345011
Author(s):  
GIANCARLO GHIRARDI ◽  
RAFFAELE ROMANO

A deeper understanding of the origin of quantum correlations is expected to allow a better comprehension of the physical principles underlying quantum mechanics. In this work, we reconsider the possibility of devising "crypto-nonlocal theories", using a terminology firstly introduced by Leggett. We generalize and simplify the investigations on this subject which can be found in the literature. At their deeper level, such theories allow nonlocal correlations which can overcome the quantum limit.

2020 ◽  
Vol 18 (04) ◽  
pp. 2050014
Author(s):  
Hiroyuki Ozeki ◽  
Satoshi Ishizaka

The characterization of the extremal points of the set of quantum correlations has attracted wide interest. In the simplest bipartite Bell scenario, a necessary and sufficient criterion for identifying extremal correlations has recently been conjectured, but extremality of tripartite correlations is not well known. In this study, we analyze tripartite extremal correlations in terms of the conjectured bipartite extremal criterion, and we demonstrate that the bipartite part of some extremal correlations satisfies the bipartite criterion, even though they violate Svetlichny’s inequality, and therefore are considered (stronger) genuine tripartite nonlocal correlations. This phenomenon arises from the fact that the conjectured extremal criterion is automatically satisfied when the violation of the Clauser–Horne–Shimony–Holt (CHSH) inequality exceeds a certain threshold, the value of which is given by the maximum CHSH violation at the edges of the probability space. This also suggests the possibility that the extremality of bipartite correlations can be certified by verifying whether the CHSH violation exceeds the threshold.


2019 ◽  
Vol 5 (4) ◽  
pp. eaav8370 ◽  
Author(s):  
Avishy Carmi ◽  
Eliahu Cohen

If nature allowed nonlocal correlations other than those predicted by quantum mechanics, would that contradict some physical principle? Various approaches have been put forward in the past two decades in an attempt to single out quantum nonlocality. However, none of them can explain the set of quantum correlations arising in the simplest scenarios. Here, it is shown that generalized uncertainty relations, as well as a specific notion of locality, give rise to both familiar and new characterizations of quantum correlations. In particular, we identify a condition, relativistic independence, which states that uncertainty relations are local in the sense that they cannot be influenced by other experimenters’ choices of measuring instruments. We prove that theories with nonlocal correlations stronger than the quantum ones do not satisfy this notion of locality, and therefore, they either violate the underlying generalized uncertainty relations or allow experimenters to nonlocally tamper with the uncertainty relations of their peers.


Quanta ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 40 ◽  
Author(s):  
Emily Christine Adlam

It is proposed that certain features of quantum mechanics may be perspectival effects, which arise because experiments performed on locally accessible variables can only uncover a certain subset of the correlations exhibited by an underlying deterministic theory. This hypothesis is used to derive the no-signaling principle, thus resolving an open question regarding the apparently fine-tuned nature of quantum correlations. Some potential objections to this approach are then discussed and answered.Quanta 2018; 7: 40–53.


2011 ◽  
Vol 18 (04) ◽  
pp. 339-351 ◽  
Author(s):  
Dariusz Chruściński ◽  
Andrzej Kossakowski ◽  
Giuseppe Marmo ◽  
E. C. G. Sudarshan

We analyze the dynamics of coupled classical and quantum systems. The main idea is to treat both systems as true quantum ones and impose a family of superselection rules which imply that the corresponding algebra of observables of one subsystem is commutative and hence may be treated as a classical one. Equivalently, one may impose a special symmetry which restricts the algebra of observables to the 'classical' subalgebra. The characteristic feature of classical-quantum dynamics is that it leaves invariant a subspace of classical-quantum states, that is, it does not create quantum correlations as measured by the quantum discord.


2011 ◽  
Vol 09 (07n08) ◽  
pp. 1757-1771 ◽  
Author(s):  
A. R. USHA DEVI ◽  
A. K. RAJAGOPAL ◽  
SUDHA

Generalized measurement schemes on one part of bipartite states, which would leave the set of all separable states insensitive are explored here to understand quantumness of correlations in a more general perspective. This is done by employing linear maps associated with generalized projective measurements. A generalized measurement corresponds to a quantum operation mapping a density matrix to another density matrix, preserving its positivity, hermiticity, and trace class. The positive operator valued measure (POVM) — employed earlier in the literature to optimize the measures of classical/quantum correlations — correspond to completely positive (CP) maps. The other class, the not completely positive (NCP) maps, are investigated here, in the context of measurements, for the first time. It is shown that such NCP projective maps provide a new clue to the understanding of quantumness of correlations in a general setting. Especially, the separability–classicality dichotomy gets resolved only when both the classes of projective maps (CP and NCP) are incorporated as optimizing measurements. An explicit example of a separable state — exhibiting nonzero quantum discord, when possible optimizing measurements are restricted to POVMs — is reexamined with this extended scheme incorporating NCP projective maps to elucidate the power of this approach.


Sign in / Sign up

Export Citation Format

Share Document