algebra of observables
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
A. S. Sitdikov ◽  
A. S. Nikitin

In this paper, we study the influence of nonabelian superselection rules on the transfer of quantum information with the help of qubits on the base of an algebraic model and formulate quantum protocols. We pay the main attention to the superselection structure of the algebra of observables [Formula: see text] defined by the Cuntz algebra [Formula: see text] (a field algebra) that contains [Formula: see text] as a pointwise fixed subalgebra with respect to the action of the gauge group [Formula: see text]. We prove that it is possible to code information only with the help of states such that projectors on them belong to the algebra of observables. These projectors commute with the elements of the representation of the group [Formula: see text], and therefore allow the recipient to restore the obtained information.


2020 ◽  
Vol 547 ◽  
pp. 162-172
Author(s):  
Eivind Eriksen ◽  
Arvid Siqveland

2019 ◽  
Vol 16 (11) ◽  
pp. 1950165 ◽  
Author(s):  
F. M. Ciaglia ◽  
A. Ibort ◽  
G. Marmo

Schwinger’s algebra of selective measurements has a natural interpretation in the formalism of groupoids. Its kinematical foundations, as well as the structure of the algebra of observables of the theory, were presented in [F. M. Ciaglia, A. Ibort and G. Marmo, Schwinger’s picture of quantum mechanics I: Groupoids, Int. J. Geom. Meth. Mod. Phys. (2019), arXiv: 1905.12274 [math-ph]. https://doi.org/10.1142/S0219887819501196 . F. M. Ciaglia, A. Ibort and G. Marmo, Schwinger’s picture of quantum mechanics II: Algebras and observables, Int. J. Geom. Meth. Mod. Phys. (2019). https://doi.org/10.1142/S0219887819501366 ]. In this paper, a closer look to the statistical interpretation of the theory is taken and it is found that an interpretation in terms of Sorkin’s quantum measure emerges naturally. It is proven that a suitable class of states of the algebra of virtual transitions of the theory allows to define quantum measures by means of the corresponding decoherence functionals. Quantum measures satisfying a reproducing property are described and a class of states, called factorizable states, possessing the Dirac–Feynman “exponential of the action” form are characterized. Finally, Schwinger’s transformation functions are interpreted similarly as transition amplitudes defined by suitable states. The simple examples of the qubit and the double slit experiment are described in detail, illustrating the main aspects of the theory.


2017 ◽  
Vol 29 (06) ◽  
pp. 1750021 ◽  
Author(s):  
Valter Moretti ◽  
Marco Oppio

As earlier conjectured by several authors and much later established by Solèr (relying on partial results by Piron, Maeda–Maeda and other authors), from the lattice theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. Stückelberg provided some physical, but not mathematically rigorous, reasons for ruling out the real Hilbert space formulation, assuming that any formulation should encompass a statement of Heisenberg principle. Focusing on this issue from another — in our opinion, deeper — viewpoint, we argue that there is a general fundamental reason why elementary quantum systems are not described in real Hilbert spaces. It is their basic symmetry group. In the first part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a real Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the real one, all selfadjoint operators represent observables in accordance with Solèr’s thesis, and the standard quantum version of Noether theorem may be formulated. In the second part of this work, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the quantum system and we adopt a notion of continuity referred to the states viewed as probability measures on the elementary propositions. Also in this case, the final result proves that there exists a unique (up to sign) Poincaré invariant complex structure making the theory complex and completely fitting into Solèr’s picture. This complex structure reveals a nice interplay of Poincaré symmetry and the classification of the commutant of irreducible real von Neumann algebras.


2017 ◽  
Vol 50 (6) ◽  
pp. 065301 ◽  
Author(s):  
Sahar Alipour ◽  
Dariusz Chruściński ◽  
Paolo Facchi ◽  
Giuseppe Marmo ◽  
Saverio Pascazio ◽  
...  

2016 ◽  
Vol 2016 (1) ◽  
Author(s):  
Norbert Bodendorfer ◽  
Paweł Duch ◽  
Jerzy Lewandowski ◽  
Jędrzej Świeżewski

2015 ◽  
Vol 12 (06) ◽  
pp. 1560001
Author(s):  
A. P. Balachandran ◽  
A. R. de Queiroz ◽  
S. Vaidya

The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. Therefore one reaches the remarkable possibility that there may be many entropies for a given state. We show that this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This ambiguity in entropy, which can occur at zero temperature, can often be traced to a gauge symmetry emergent from the non-trivial topological character of the configuration space of the underlying system. We also establish the analogue of an H-theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix. After demonstrating this entropy ambiguity for the simple example of the algebra of 2 × 2 matrices, we argue that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. We work out the simplest situation with such non-Abelian symmetry, that of an ethylene molecule.


Sign in / Sign up

Export Citation Format

Share Document