Activation energy and binary chemical reaction effect in nonlinear thermal radiative stagnation point flow of Walter-B nanofluid: Numerical computations

2020 ◽  
Vol 34 (13) ◽  
pp. 2050132 ◽  
Author(s):  
M. Ijaz Khan ◽  
Faris Alzahrani

This paper examines nonlinear thermal radiative stagnation point flow of Walter-B nanofluid. The characteristics of nanofluid are explored using Brownian motion and thermophoresis effects. In the presence of uniform magnetic field, fluid is conducting electrically. Furthermore, phenomena of mass and heat transfer are studied by implementing the effects of chemical reaction, Joule heating and activation energy. Outcomes of distinct variables such as induced magnetic parameter, Eckert number, thermal radiation parameter, Weissenberg number, ratio of rate constant, heat capacity ratio, thermal Biot number, solutal Biot number, Prandtl number, heat generation parameter, Schmidt number on concentration, temperature and velocity distributions are explored. The numerical method is implemented to solve the governing flow expression. Further, Sherwood number, Nusselt number and skin friction coefficient are analyzed and discussed in tables. Weissenberg number have opposite behavior on velocity field while it increases for larger values of mixed convection parameter. Temperature of the fluid rises for higher values of thermal Biot number, thermophoresis diffusion coefficient, heat generation parameter and Eckert number Activation energy parameter and Weissenberg number have direct relation with concentration field.

Author(s):  
A Zaib ◽  
MM Rashidi ◽  
AJ Chamkha ◽  
NF Mohammad

This research peruses the characteristics of nanoparticles on stagnation point flow of a generalized Newtonian Carreau fluid past a nonlinear stretching sheet with nonlinear thermal radiation. The process of mass transfer is modeled using activation energy and binary chemical reaction along with the Brownian motion and thermophoresis. For energy activation a modified Arrhenius function is invoked. With regard to the solution of the governing differential equations, suitable transformation variables are used to obtain the system of nonlinear ordinary differential equations before being numerically solved using the shooting method. Graphical results are shown in order to scrutinize the behavior of pertinent parameters on velocity, temperature profiles, and concentration of nanoparticle. Also, the behavior of fluid flow is investigated through the coefficient of the skin friction, Nusselt number, Sherwood number, and streamlines. Results showed that the velocity ratio parameter serves to increase the velocity of fluid and reduces the temperature distribution and nanoparticle concentration. The results were compared with the available studies and were found to be in excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document