Strategy of state transfer for open quantum systems by no-knowledge feedback control: Via reverse engineering

Author(s):  
Juju Hu ◽  
Qiang Ke ◽  
Yinghua Ji

It has long been interest to control the transfer of population between specified quantum states and protect the coherence of the system at the same time. In this paper, we investigate a scheme to improve the strategy of state transfer for open quantum systems using no-knowledge measurement-based feedback control and reverse engineering. In order to ensure that the system can process information effectively, we first design the control pulse in advance from the perspective of population and coherence and then verify it through numerical simulations. The research results show that, based on the designed control pulse, we can indeed drive the system from any initial state to the desired target state, and the coherence of the system can be effectively protected during the state transition.

2019 ◽  
Vol 3 (3) ◽  
pp. 565-570 ◽  
Author(s):  
Yanan Liu ◽  
Daoyi Dong ◽  
Ian R. Petersen ◽  
Hidehiro Yonezawa

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hossein Rangani Jahromi ◽  
Rosario Lo Franco

AbstractHilbert–Schmidt speed (HSS) is a special type of quantum statistical speed which is easily computable, since it does not require diagonalization of the system state. We find that, when both HSS and quantum Fisher information (QFI) are calculated with respect to the phase parameter encoded into the initial state of an n-qubit register, the zeros of the HSS dynamics are actually equal to those of the QFI dynamics. Moreover, the signs of the time-derivatives of both HSS and QFI exactly coincide. These findings, obtained via a thorough investigation of several paradigmatic open quantum systems, show that HSS and QFI exhibit the same qualitative time evolution. Therefore, HSS reveals itself as a powerful figure of merit for enhancing quantum phase estimation in an open quantum system made of n qubits. Our results also provide strong evidence for both contractivity of the HSS under memoryless dynamics and its sensitivity to system-environment information backflows to detect the non-Markovianity in high-dimensional systems, as suggested in previous studies.


2007 ◽  
Vol 14 (03) ◽  
pp. 265-274 ◽  
Author(s):  
Andrzej Kossakowski ◽  
Rolando Rebolledo

Non-Markovian reduced dynamics of an open system is investigated. In the case when the initial state of the reservoir is the vacuum state, an approximation is introduced which makes it possible to construct a reduced dynamics which is completely positive.


2019 ◽  
Vol 26 (03) ◽  
pp. 1950014 ◽  
Author(s):  
Frederik vom Ende ◽  
Gunther Dirr ◽  
Michael Keyl ◽  
Thomas Schulte-Herbrüggen

In quantum systems theory one of the fundamental problems boils down to: given an initial state, which final states can be reached by the dynamic system in question. Here we consider infinite-dimensional open quantum dynamical systems following a unital Kossakowski–Lindblad master equation extended by controls. More precisely, their time evolution shall be governed by an inevitable potentially unbounded Hamiltonian drift term H0, finitely many bounded control Hamiltonians Hj allowing for (at least) piecewise constant control amplitudes [Formula: see text] plus a bang-bang (i.e., on-off) switchable noise term ГV in Kossakowski–Lindblad form. Generalizing standard majorization results from finite to infinite dimensions, we show that such bilinear quantum control systems allow to approximately reach any target state majorized by the initial one as up to now it only has been known in finite dimensional analogues. The proof of the result is currently limited to the bounded control Hamiltonians Hj and for noise terms ГV with compact normal V.


2021 ◽  
Author(s):  
Andrei Khrennikov ◽  
Irina Basieva

Abstract Recently the quantum formalism and methodology started to be applied to modeling of information processing in biosystems, mainly to the process of decision making and psychological behavior (but some applications to microbiology and genetics are considered as well). Since a living system is fundamentally open (an isolated biosystem is dead), the theory of open quantum systems is the most powerful tool for life-modeling. In this paper, we turn to the famous Schrödinger book “What is life?” and reformulate his speculations in terms of this theory. Schrödinger pointed toorder preservation as one of the main distinguishing features of biosystems. Entropy is the basic quantitative measure of order. In physical systems, entropy has the tendency to increase (Second Law of Thermodynamics for isolated classical systems and dissipation in open classical and quantum systems). Schrödinger emphasized the ability of biosystems to beat this tendency. We demonstrate that systems processing information in the quantum-like way can preservethe order-structure expressed by the quantum (von Neumann or linear) entropy. We emphasize the role of the special class of quantum dynamics and initial states generating the camel-like graphs for entropy-evolution in the process of interaction with a new environment ℰ: 1) entropy (disorder) increasing in the process of adaptation to the specific features of ℰ; 2) entropy decreasing (order increasing) resulting from adaptation; 3) the restoration of order or even its increase for limiting steady state. In the latter case the steady state entropy can be even lower than the entropy of the initial state.


2014 ◽  
Vol 39 (4) ◽  
pp. 360-370 ◽  
Author(s):  
Shuang CONG ◽  
Long-Zhen HU ◽  
Fei YANG ◽  
Jian-Xiu LIU

2013 ◽  
Vol 39 (4) ◽  
pp. 360-370 ◽  
Author(s):  
Shuang CONG ◽  
Long-Zhen HU ◽  
Fei YANG ◽  
Jian-Xiu LIU

Sign in / Sign up

Export Citation Format

Share Document