TOTAL AND NEGATIVE REFRACTION OF ELECTROMAGNETIC WAVES

2005 ◽  
Vol 19 (01n02) ◽  
pp. 21-33 ◽  
Author(s):  
YONG ZHANG ◽  
A. MASCARENHAS

Recently there has been a great deal of interest in an unusual category of material, that is, a material that exhibits negative refractive index or more generally negative group velocity. Perhaps the most immediate application of this type of material is in an area known as total and negative refraction, which may potentially lead to many novel optical devices. The reason that the phenomenon of total and negative refraction has become so interesting to the physics community is also due largely to the notion that this phenomenon would never occur in conventional materials with positive refractive index. It turns out that total and negative refraction can be realized even in natural crystalline materials or in artificial materials (e.g. photonic crystals) without negative (effective) refractive index. In this brief review, after providing a brief historic account for the research related to finding materials with negative group velocity and achieving negative refraction, we discuss the three primary approaches that have yielded experimental demonstrations of negative refraction, in an effort to clarify the underlying physics involved with each approach. A brief discussion on the subwavelength resolution application of the negative (effective) refractive index material is also given.

2010 ◽  
Vol 36 (13) ◽  
pp. 1129-1139
Author(s):  
V. P. Makarov ◽  
A. A. Rukhadze ◽  
A. A. Samokhin

2019 ◽  
Vol 24 (11) ◽  
pp. 3632-3643 ◽  
Author(s):  
Jiao Wang ◽  
Yang Huang ◽  
Weiqiu Chen ◽  
Weiqiu Zhu

This paper considers the propagation of elastic waves in periodic two-dimensional mass–spring structures with diagonal springs. The second-neighbor interactions in non-diagonal directions are included to account for the nonlocal effect. The influences of the spring stiffness in the diagonal directions and the nonlocal effect on the propagation characteristics of elastic waves are then scrutinized. Through the dispersion relation curve and the equi-frequency contours, it is seen that when the diagonal spring stiffness increases, the slope of the second curve in the [Formula: see text]–M direction will not always be positive, meaning that the negative group velocity occurs. Therefore, an incident wavevector with a chosen angle to the negative group velocity can lead to the negative refraction phenomenon in the two-dimensional mass–spring structure. Another interesting phenomenon called directional radiation of elastic waves can also be achieved by adjusting the nonlocal effect. Within a certain range, the stronger the nonlocal effect in a specific direction is, the more obviously the elastic waves propagate along this direction. In this paper, we theoretically analyze and numerically simulate the phenomena of negative refraction and directional wave propagation by choosing a proper set of parameters of the two-dimensional mass–spring structure.


2017 ◽  
Vol 9 (3) ◽  
pp. 03039-1-03039-4 ◽  
Author(s):  
Y. M. Aleksandrov ◽  
◽  
V. V. Yatsishen ◽  

2009 ◽  
Vol 152-153 ◽  
pp. 357-360 ◽  
Author(s):  
Andrei V. Ivanov ◽  
A.N. Shalygin ◽  
V.Yu. Galkin ◽  
A.V. Vedyayev ◽  
V.A. Ivanov

For inhomogeneous mediums the оptical Magnus effect has been derived. The metamaterials fabricated from amorphous ferromagnet Co-Fe-Cr-B-Si microwires are shown to exhibit a negative refractive index for electromagnetic waves over wide scale of GHz frequencies. Optical properties and optical Magnus effect of such metamaterials are tunable by an external magnetic field.


Sign in / Sign up

Export Citation Format

Share Document