negative refractive index
Recently Published Documents


TOTAL DOCUMENTS

704
(FIVE YEARS 78)

H-INDEX

51
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Bang Huy Nguyen ◽  
Le Van Doai

Abstract We have achieved a negative refractive index with significantly reduced absorption in a three-level Λ-type atomic gas medium under Doppler broadening. It shows that the conditions for obtaining negative refractive index in the presence of Doppler broadening are very different from those of Doppler broadening absent. In particular, in order to obtain negative refractive index in the case of Doppler broadening the coupling laser intensity must be approximately ten times greater than that when the Doppler broadening is ignored. Meanwhile, the frequency band of negative refractive index with Doppler broadening is significantly expanded (about a hundred times) compared to that without Doppler broadening, however, the amplitude of negative refractive index decreases with increasing temperature (or Doppler width). Even in some cases as temperature (Doppler width) increases, the left-handedness of the material can disappear. In addition, we also show that the amplitude and the frequency band of negative refractive index can be changed by adjusting the intensity and the frequency of coupling laser. Our theoretical investigation can be useful for selection of laser parameters under different temperature conditions to achieve negative refractive index in experimental implementation.


2021 ◽  
Vol 127 (23) ◽  
Author(s):  
Chih-Yu Chen ◽  
Ming-Chien Hsu ◽  
C. D. Hu ◽  
Yeu Chung Lin

2021 ◽  
Author(s):  
Kimberley W. Eccleston ◽  
Yiwen Zhou ◽  
Ian G. Platt ◽  
Adrian E.-C. Tan ◽  
Ian M. Woodhead

Author(s):  
Cuihong Yang ◽  
J. Y. Zhang ◽  
R. Wieser ◽  
Wen Xu

Abstract We consider the transverse electric (TE) plasmonic modes supported by black phosphorene (BP) in a parallel waveguide structure with left-handed material (LHM) instead of the conventional right-handed dielectric material. The existence condition of the TE BP surface plasmon polariton (SPP) is $\mathrm{Im}\sigma>0$. When an electric field is polarized along one of the two orthogonal crystal axes, the anisotropic symmetric and anti-symmetric plasmonic modes depend on the incident optical energy, the chemical potential, and the distance between two BP sheets can be observed. The symmetric mode has a more extensive effective refractive index, which possesses stronger field confinement. With a decreasing distance $d$ between two BP sheets, the coupling strength between the two separate BPSPP waves increases. When $d$ is small enough, the anti-symmetric mode root does not exist. LHMs can be used to realize a TE BPSPP mode to enhance the localization of the BPSPP, which is a practical method in optoelectronic devices based on black phosphorene.


2021 ◽  
pp. 113208
Author(s):  
Asri Rasad ◽  
Hadi Teguh Yudistira ◽  
Fitrah Qalbina ◽  
Adhitya Gandaryus Saputro ◽  
Amir Faisal

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xingcai Li ◽  
Juan Wang ◽  
Jinghong Zhang

AbstractWe investigate, both theoretically and numerically, the equivalence relationship between the positive and negative refraction index dielectric materials in electrostatic invisibility cloak. We have derived an analytical formula that enables fast calculate the corresponding positive dielectric constant from the negative refraction index material. The numerical results show that the negative refraction index material can be replaced by the positive refractive index materials in the static field cloak. This offers some new viewpoints for designing new sensing systems and devices in physics, colloid science, and engineering applications.


2021 ◽  
Author(s):  
Lezheng Fang ◽  
Michael J. Leamy

Abstract Acoustic metamaterials achieving negative index refraction usually operate linearly over a narrowband of frequency and consist of complex unit cell structures incorporating resonators. In this paper, we propose and analyze a simple, non-resonant, nonlinear rotator lattice structure which can be configured with either a positive or negative index of refraction over a broadband frequency range. The system’s frequency-dependent transmission is studied analytically via a reduced model along the interface of positive and negative refractive index lattices. Results for energy transmission are compared to those obtained using direct numerical simulation and close agreement is documented for small amplitude waves. For larger amplitude waves, a multiple scales analysis approach is used to show that the nonlinearity of the lattice shifts the system’s band structure, inducing amplitude-dependent transmission. For the studied system, the transmission decreases as we increase the incident wave amplitude, agreeing qualitatively with results from direct numerical simulation. At large-enough amplitudes, near the interface the wave amplitude decreases rapidly. As the wave travels further into the media, the amplitude drops, causing the nonlinear effect to decline as well. This decaying envelope does not result in a zero transmission in the far field, as expected from linear theory, and instead, the nonlinearity of the proposed rotator lattice prevents the far-field transmitted wave from surpassing a specific threshold amplitude, regardless of the incident wave. This finding may serve as an inspiration for designing nonlinear wave saturators.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Rashed Iqbal Faruque ◽  
Air Mohammad Siddiky ◽  
Eistiak Ahamed ◽  
Mohammad Tariqul Islam ◽  
Sabirin Abdullah

AbstractThe electromagnetic properties of the metal based dielectric in the field of millimeter and sub-millimeter technology attracts a new era for innovation. In this research work, we have introduced a parallel LC shaped metamaterial resonator with wider bandwidth. The negative refractive index for two resonant frequencies is located from the negative permittivity from 5.1 to 6.3, 10.4 to 12.9 GHz, where the negative refractive index is located from 5.4 to 6.3 and 10.5 to 13.5 GHz. The electromagnetic wave polarizing in the proposed structure with parallel LC shaped metallic structure shows a fascinating response of wider bandwidth for the external electric and magnetic field. This paper focuses on the design of conducting layer for the suggested design with the parallel metallic arm for analysing the mutual coupling effect of the scattering response where the sub-branch in metallic design is shown more resonant frequencies with the enhancement of the compactness. This proposed structure is analysed with different metallic arrangements and array structures for different boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document