Electronic and optical properties of InGaAs/GaAs quantum dots with tunable aspect-ratio

2014 ◽  
Vol 28 (09) ◽  
pp. 1450072
Author(s):  
Pengfei Lu ◽  
Xuxia Zhong ◽  
Chao Sun ◽  
Zhongyuan Yu ◽  
Lihong Han ◽  
...  

In this paper, a combined approach of finite element method (FEM) and quadratic programming optimization method is proposed to investigate the nonuniform equilibrium composition profile of InGaAs / GaAs quantum dots (QDs) in the framework of Gibbs energy optimization (GEO). The proposed QDs are varied with aspect ratio from 0.3 to 0.5. The wave functions of electron and heavy hole are predicted by using the k ⋅ p method. The changes of wave functions before and after optimization can be observed by using composition optimization. Both the eigenvalues and transition energy change obviously with the increasing aspect ratio. The linear optical absorption coefficients corresponding to the interband ground state transition are obtained via the density matrix approach and perturbation expansion method. The numerical results reveal that the aspect ratio and composition profile play significant roles in determining the electronic and optical properties.

2018 ◽  
Vol 32 (06) ◽  
pp. 1850084 ◽  
Author(s):  
Yi-Min Ding ◽  
Jun-Jie Shi ◽  
Min Zhang ◽  
Meng Wu ◽  
Hui Wang ◽  
...  

It is difficult to integrate two-dimensional (2D) graphene and hexagonal boron-nitride (h-BN) in optoelectronic nanodevices, due to the semi-metal and insulator characteristic of graphene and h-BN, respectively. Using the state-of-the-art first-principles calculations based on many-body perturbation theory, we investigate the electronic and optical properties of h-BN nanosheet embedded with graphene dots. We find that C atom impurities doped in h-BN nanosheet tend to phase-separate into graphene quantum dots (QD), and BNC hybrid structure, i.e. a graphene dot within a h-BN background, can be formed. The band gaps of BNC hybrid structures have an inverse relationship with the size of graphene dot. The calculated optical band gaps for BNC structures vary from 4.71 eV to 3.77 eV, which are much smaller than that of h-BN nanosheet. Furthermore, the valence band maximum is located in C atoms bonded to B atoms and conduction band minimum is located in C atoms bonded to N atoms, which means the electron and hole wave functions are closely distributed around the graphene dot. The bound excitons, localized around the graphene dot, determine the optical spectra of the BNC hybrid structures, in which the exciton binding energies decrease with increase in the size of graphene dots. Our results provide an important theoretical basis for the design and development of BNC-based optoelectronic nanodevices.


2013 ◽  
Vol 87 (12) ◽  
Author(s):  
Zaiping Zeng ◽  
Christos S. Garoufalis ◽  
Sotirios Baskoutas ◽  
Gabriel Bester

2011 ◽  
Vol 7 (3) ◽  
pp. 328-352 ◽  
Author(s):  
Wei-dong Sheng ◽  
Marek Korkusinski ◽  
Alev Devrim Güçlü ◽  
Michal Zielinski ◽  
Pawel Potasz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document