Hybrid routing for interconnected BA scale-free networks

2015 ◽  
Vol 29 (33) ◽  
pp. 1550212
Author(s):  
Xue-Jun Zhang ◽  
Yan-Bo Zhu ◽  
Xiang-Min Guan

Interconnections between networks make the traffic condition in interconnected networks more complicated than that in an isolated network. They make the load and capacity of nodes mismatch and restrict the traffic performance accordingly. To improve the performance, in this paper, we propose a hybrid routing strategy, which distinguishes the traffic within each individual network and the traffic across multiple networks and uses different routing rules for these two types of traffic. Simulation results show that this routing strategy can achieve better traffic performance than traditional strategies when networks are coupled by a small number of interconnected links, which is the case in most of real-world interconnected networks. Therefore, the proposed hybrid routing strategy can find applications in the planning and optimization of practical interconnected networks.

2016 ◽  
Vol 65 (24) ◽  
pp. 248901
Author(s):  
Yang Xian-Xia ◽  
Pu Cun-Lai ◽  
Xu Zhong-Qi ◽  
Chen Rong-Bin ◽  
Wu Jie-Xin ◽  
...  

2017 ◽  
Vol 28 (07) ◽  
pp. 1750087 ◽  
Author(s):  
Yibo Yang ◽  
Honglin Zhao ◽  
Jinlong Ma ◽  
Zhaohui Qi ◽  
Yongbin Zhao

Traffic is one of the most fundamental dynamical processes in networked systems. With the traditional shortest path routing (SPR) protocol, traffic congestion is likely to occur on the hub nodes on scale-free networks. In this paper, we propose an improved optimal routing (IOR) strategy which is based on the betweenness centrality and the degree centrality of nodes in the scale-free networks. With the proposed strategy, the routing paths can accurately bypass hub nodes in the network to enhance the transport efficiency. Simulation results show that the traffic capacity as well as some other indexes reflecting transportation efficiency are further improved with the IOR strategy. Owing to the significantly improved traffic performance, this study is helpful to design more efficient routing strategies in communication or transportation systems.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Jinlong Ma ◽  
Junfeng Zhang ◽  
Yongqiang Zhang

2016 ◽  
Vol 27 (04) ◽  
pp. 1650044 ◽  
Author(s):  
Jinlong Ma ◽  
Weizhan Han ◽  
Qing Guo ◽  
Shuai Zhang ◽  
Junfang Wang ◽  
...  

The traffic dynamics of multi-layer networks has become a hot research topic since many networks are comprised of two or more layers of subnetworks. Due to its low traffic capacity, the traditional shortest path routing (SPR) protocol is susceptible to congestion on two-layer complex networks. In this paper, we propose an efficient routing strategy named improved global awareness routing (IGAR) strategy which is based on the betweenness centrality of nodes in the two layers. With the proposed strategy, the routing paths can bypass hub nodes of both layers to enhance the transport efficiency. Simulation results show that the IGAR strategy can bring much better traffic capacity than the SPR and the global awareness routing (GAR) strategies. Because of the significantly improved traffic performance, this study is helpful to alleviate congestion of the two-layer complex networks.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhaoxing Li ◽  
Qionghai Liu ◽  
Li Chen

A complex network can crash down due to disturbances which significantly reduce the network’s robustness. It is of great significance to study on how to improve the robustness of complex networks. In the literature, the network rewire mechanism is one of the most widely adopted methods to improve the robustness of a given network. Existing network rewire mechanism improves the robustness of a given network by re-connecting its nodes but keeping the total number of edges or by adding more edges to the given network. In this work we propose a novel yet efficient network rewire mechanism which is based on multiobjective optimization. The proposed rewire mechanism simultaneously optimizes two objective functions, i.e., maximizing network robustness and minimizing edge rewire operations. We further develop a multiobjective discrete partite swarm optimization algorithm to solve the proposed mechanism. Compared to existing network rewire mechanisms, the developed mechanism has two advantages. First, the proposed mechanism does not require specific constraints on the rewire mechanism to the studied network, which makes it more feasible for applications. Second, the proposed mechanism can suggest a set of network rewire choices each of which can improve the robustness of a given network, which makes it be more helpful for decision makings. To validate the effectiveness of the proposed mechanism, we carry out experiments on computer-generated Erdős–Rényi and scale-free networks, as well as real-world complex networks. The results demonstrate that for each tested network, the proposed multiobjective optimization based edge rewire mechanism can recommend a set of edge rewire solutions to improve its robustness.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Wei Huang ◽  
Xiang Pan ◽  
Xi Yang ◽  
Jianhua Zhang

It is well known that routing strategies based on global topological information is not a good choice for the enhancement of traffic throughput in large-scale networks due to the heavy communication cost. On the contrary, acquiring spatial information, such as spatial distances among nodes, is more feasible. In this paper, we propose a novel distance-based routing strategy in spatial scale-free networks, called LDistance strategy. The probability of establishing links among nodes obeys the power-law in the spatial network under study. Compared with the LDegree strategy (Wang et al., 2006) and the mixed strategy (a strategy combining both greedy routing strategy and random routing strategy), results show that our proposed LDistance strategy can further enhance traffic capacity. Besides, the LDistance strategy can also achieve a much shorter delivering time than the LDegree strategy. Analyses reveal that the superiority of our strategy is mainly due to the interdependent relationship between topological and spatial characteristics in spatial scale-free networks. Furthermore, along transporting path in the LDistance strategy, the spatial distance to destination decays more rapidly, and the degrees of routers are higher than those in the LDegree strategy.


2011 ◽  
Vol 20 (8) ◽  
pp. 080501 ◽  
Author(s):  
Si-Yuan Zhou ◽  
Kai Wang ◽  
Yi-Feng Zhang ◽  
Wen-Jiang Pei ◽  
Cun-Lai Pu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document