Studies on the dynamic stability of an axially moving nanobeam based on the nonlocal strain gradient theory

2018 ◽  
Vol 32 (16) ◽  
pp. 1850167 ◽  
Author(s):  
Jing Wang ◽  
Huoming Shen ◽  
Bo Zhang ◽  
Juan Liu

In this paper, we studied the parametric resonance issue of an axially moving viscoelastic nanobeam with varying velocity. Based on the nonlocal strain gradient theory, we established the transversal vibration equation of the axially moving nanobeam and the corresponding boundary condition. By applying the average method, we obtained a set of self-governing ordinary differential equations when the excitation frequency of the moving parameters is twice the intrinsic frequency or near the sum of certain second-order intrinsic frequencies. On the plane of parametric excitation frequency and excitation amplitude, we can obtain the instability region generated by the resonance, and through numerical simulation, we analyze the influence of the scale effect and system parameters on the instability region. The results indicate that the viscoelastic damping decreases the resonance instability region, and the average velocity and stiffness make the instability region move to the left- and right-hand sides. Meanwhile, the scale effect of the system is obvious. The nonlocal parameter exhibits not only the stiffness softening effect but also the damping weakening effect, while the material characteristic length parameter exhibits the stiffness hardening effect and damping reinforcement effect.

2020 ◽  
Vol 31 (12) ◽  
pp. 1511-1523
Author(s):  
Mohammad Mahinzare ◽  
Hossein Akhavan ◽  
Majid Ghadiri

In this article, a first-order shear deformable model is expanded based on the nonlocal strain gradient theory to vibration analysis of smart nanostructures under different boundary conditions. The governing equations of motion of rotating magneto-viscoelastic functionally graded cylindrical nanoshell in the magnetic field and corresponding boundary conditions are obtained using Hamilton’s principle. To discretize the equations of motion, the generalized differential quadrature method is applied. The aim of this work is to investigate the effects of the temperature changes, nonlocal parameter, material length scale, viscoelastic coefficient, various boundary conditions, and the rotational speed of this smart structure on natural frequencies of rotating cylindrical nanoshell made of magneto-viscoelastic functionally graded material.


2019 ◽  
Vol 11 (07) ◽  
pp. 1950067 ◽  
Author(s):  
Mohammad Alakel Abazid

A nonlocal strain gradient theory (NSGT) is utilized to investigate the thermal buckling, free vibration and wave propagation in smart piezoelectromagnetic nanoplates in hygrothermal environments embedded in an elastic substrate. The main advantage of the NSGT over other continuum theories is that it contains both nonlocal parameter and material length scale parameter. The elastic substrate is modeled as Pasternak foundation model. According to the NSGT and the sinusoidal two-variable shear deformation plate theory, the governing equations of motion are derived involving the material parameters and hygrothermo-electromagnetic effects. The present solutions are checked through comparisons with those presented in the literature. Numerical results show the impacts of the nonlocal and gradient parameters, side-to-thickness ratio, hygrothermo-electromagnetic loads and substrate stiffness on the thermal buckling, frequencies and wave propagation in the smart nanoplates.


2019 ◽  
Vol 40 (12) ◽  
pp. 1723-1740 ◽  
Author(s):  
Z. Sharifi ◽  
R. Khordad ◽  
A. Gharaati ◽  
G. Forozani

AbstractIn this paper, we analytically study vibration of functionally graded piezoelectric (FGP) nanoplates based on the nonlocal strain gradient theory. The top and bottom surfaces of the nanoplate are made of PZT-5H and PZT-4, respectively. We employ Hamilton’s principle and derive the governing differential equations. Then, we use Navier’s solution to obtain the natural frequencies of the FGP nanoplate. In the first step, we compare our results with the obtained results for the piezoelectric nanoplates in the previous studies. In the second step, we neglect the piezoelectric effect and compare our results with those obtained for the functionally graded (FG) nanoplates. Finally, the effects of the FG power index, the nonlocal parameter, the aspect ratio, and the side-tothickness ratio, and the nanoplate shape on natural frequencies are investigated.


Author(s):  
S. M. J. Hosseini ◽  
J. Torabi ◽  
R. Ansari ◽  
A. Zabihi

This paper is concerned with studying the size-dependent nonlinear dynamic pull-in instability and vibration of functionally graded Euler–Bernoulli nanobeams (FG-EBNs) with the von Kármán hypothesis based on the nonlocal strain gradient theory (NLSGT). To this end, the partial differential equation (PDE) is developed by Hamilton’s principle considering the intermolecular, fringing field and electrostatic nonlinear forces. Then, the Galerkin method (GM) is utilized to acquire the ordinary differential equation (ODE) and the results are obtained with the help of an analytical approach called the homotopy analysis method (HAM). To verify the outcome of this study, the nonlinear and linear frequencies obtained are compared with those of the literature. Consequently, the pull-in voltage of the FG nanobeam is obtained and the variations of nonlinear and linear frequencies are discussed in detail. Also, the effects of initial amplitude, electrostatic force, length scale, nonlocal parameter, material gradient index and boundary condition (BC) on the electromechanical behavior of FG-EBNs are analyzed with the results commented.


Sign in / Sign up

Export Citation Format

Share Document