Stochastic resonance in asymmetric time-delayed bistable system under multiplicative and additive noise and its applications in bearing fault detection

2019 ◽  
Vol 33 (28) ◽  
pp. 1950341 ◽  
Author(s):  
Lifang He ◽  
Dayun Hu ◽  
Gang Zhang ◽  
Siliang Lu

The asymmetric bistable system with time delays in the feedback force and random force under multiplicative and additive Gaussian noise is studied. Using the small time delay approximation approach and time-delayed Fokker–Planck equations (FPE), the signal-to-noise ratio (SNR) of the proposed stochastic system is obtained. The stochastic resonance (SR) phenomena influenced by parameters — including system parameters [Formula: see text], [Formula: see text], asymmetry parameter [Formula: see text], time delay [Formula: see text], strength [Formula: see text] of the time-delayed feedback, noise intensities [Formula: see text] and [Formula: see text] of multiplicative and additive noise, and correlation strength [Formula: see text] between two noises, are also analyzed by numerical simulations. Results demonstrate that the SR performance of the asymmetric bistable system is superior to one symmetric bistable system. Besides, both time delay and strength of time-delayed feedback could enhance the SR to some extent. Then, the asymmetric time-delayed bistable SR (ATDBSR) method is used to the bearing fault diagnosis. The engineering applications of the ATDBSR method are realized and the value of the method is verified by effective experimental results.

2012 ◽  
Vol 26 (30) ◽  
pp. 1250149 ◽  
Author(s):  
XIAOQIN LUO ◽  
DAN WU ◽  
SHIQUN ZHU

The phenomenon of stochastic resonance (SR) in a time-delayed bistable system with colored coupling between multiplicative and additive noise terms is investigated. The SR can be induced by the multiplicative noise, the time delay and the coupling strength between noise terms. Meanwhile, the SR is affected by the initial condition of the system.


Author(s):  
Y. J. Wadop Ngouongo ◽  
M. Djolieu Funaye ◽  
G. Djuidjé Kenmoé ◽  
T. C. Kofané

This paper reports the stochastic resonance (SR) phenomenon with memory effects for a Brownian particle in a potential whose shape is subjected to deformation. We model the deformation in the system by the Remoissenet–Peyrard potential and the memory effects by the time-delayed feedback. The question of the possible influence of time-delayed feedback on the occurrence of SR is then of our interest. We examine numerically the effect of feedback strength as well as time delay on SR phenomenon in terms of hysteresis loop area. It is found that time-delayed feedback has a significant effect on SR and can induce double resonances in the system. We show that the properties of SR are varying, depending on interdependence between feedback strength, time delay and shape parameter. This article is part of the theme issue ‘Vibrational and stochastic resonance in driven nonlinear systems (part 1)’.


Sign in / Sign up

Export Citation Format

Share Document