scholarly journals Stochastic resonance in an asymmetric bistable system with time-delayed feedback and correlated noises

2007 ◽  
Vol 56 (10) ◽  
pp. 5618
Author(s):  
Dong Xiao-Juan
2019 ◽  
Vol 33 (28) ◽  
pp. 1950341 ◽  
Author(s):  
Lifang He ◽  
Dayun Hu ◽  
Gang Zhang ◽  
Siliang Lu

The asymmetric bistable system with time delays in the feedback force and random force under multiplicative and additive Gaussian noise is studied. Using the small time delay approximation approach and time-delayed Fokker–Planck equations (FPE), the signal-to-noise ratio (SNR) of the proposed stochastic system is obtained. The stochastic resonance (SR) phenomena influenced by parameters — including system parameters [Formula: see text], [Formula: see text], asymmetry parameter [Formula: see text], time delay [Formula: see text], strength [Formula: see text] of the time-delayed feedback, noise intensities [Formula: see text] and [Formula: see text] of multiplicative and additive noise, and correlation strength [Formula: see text] between two noises, are also analyzed by numerical simulations. Results demonstrate that the SR performance of the asymmetric bistable system is superior to one symmetric bistable system. Besides, both time delay and strength of time-delayed feedback could enhance the SR to some extent. Then, the asymmetric time-delayed bistable SR (ATDBSR) method is used to the bearing fault diagnosis. The engineering applications of the ATDBSR method are realized and the value of the method is verified by effective experimental results.


2021 ◽  
Vol 148 ◽  
pp. 111043
Author(s):  
Rong Gui ◽  
Jiaxin Li ◽  
Yuangen Yao ◽  
Guanghui Cheng

2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Siliang Lu ◽  
Qingbo He ◽  
Haibin Zhang ◽  
Fanrang Kong

The fault-induced impulses with uneven amplitudes and durations are always accompanied with amplitude modulation and (or) frequency modulation, which leads to that the acquired vibration/acoustic signals for rotating machine fault diagnosis always present nonlinear and nonstationary properties. Such an effect affects precise fault detection, especially when the impulses are submerged in heavy background noise. To address this issue, a nonstationary weak signal detection strategy is proposed based on a time-delayed feedback stochastic resonance (TFSR) model. The TFSR is a long-memory system that can utilize historical information to enhance the signal periodicity in the feedback process, and such an effect is beneficial to periodic signal detection. By selecting the proper parameters including time delay, feedback intensity, and calculation step in the regime of TFSR, the weak signal, the noise, and the potential can be matched with each other to an extreme, and consequently a regular output waveform with low-noise interference can be obtained with the assistant of the distinct band-pass filtering effect. Simulation study and experimental verification are performed to evaluate the effectiveness and superiority of the proposed TFSR method in comparison with a traditional stochastic resonance (SR) method. The proposed method is suitable for detecting signals with strong nonlinear and nonstationary properties and (or) being subjected to heavy multiscale noise interference.


Sign in / Sign up

Export Citation Format

Share Document