Breathers and multiple rogue waves solutions of the (3+1)-dimensional Jimbo–Miwa equation

2021 ◽  
pp. 2150183
Author(s):  
Hong-Yi Zhang ◽  
Yu-Feng Zhang

In this paper, we construct the breathers of the (3+1)-dimensional Jimbo–Miwa (JM) equation by means of the Hirota bilinear method, then based on the Hirota bilinear method with a new ansatz form, the multiple rogue wave solutions are constructed. Here, we discuss the general breathers, first-order rogue waves, the second-order rogue waves and the third-order rogue waves. Then we draw the 3- and 2-dimensional plots to illustrate the dynamic characteristics of breathers and multiple rogue waves. These interesting results will help us better reveal (3+1)-dimensional JM equation evolution mechanism.

Author(s):  
Huanhuan Lu ◽  
Yufeng Zhang

AbstractIn this paper, we analyse two types of rogue wave solutions generated from two improved ansatzs, to the (2 + 1)-dimensional generalized Korteweg–de Vries equation. With symbolic computation, the first-order rogue waves, second-order rogue waves, third-order rogue waves are generated directly from the first ansatz. Based on the Hirota bilinear formulation, another type of one-rogue waves and two-rogue waves can be obtained from the second ansatz. In addition, the dynamic behaviours of obtained rogue wave solutions are illustrated graphically.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
N. Song ◽  
W. Zhang ◽  
P. Wang ◽  
Y. K. Xue

The rogue wave solutions are discussed for an inhomogeneous fifth-order nonlinear Schrödinger equation, which describes the dynamics of a site-dependent Heisenberg ferromagnetic spin chain. Using the Darboux matrix, the generalized Darboux transformation is constructed and a recursive formula is derived. Based on the transformation, the first-order to the third-order rogue wave solutions are obtained. Then, the nonlinear dynamics of the first-order to the third-order rogue waves are studied on the basis of some free parameters. Several new structures of the rogue waves are found using numerical simulation. The conclusions will be a supportive tool to study the rogue waves better.


2022 ◽  
Author(s):  
Ren Bo ◽  
Shi Kai-Zhong ◽  
Shou-Feng Shen ◽  
Wang Guo-Fang ◽  
Peng Jun-Da ◽  
...  

Abstract In this paper, we investigate the third-order nonlinear Schr\"{o}dinger equation which is used to describe the propagation of ultrashort pulses in the subpicosecond or femtosecond regime. Based on the independent transformation, the bilinear form of the third-order NLSE is constructed. The multiple soliton solutions are constructed by solving the bilinear form. The multi-order rogue waves and interaction between one-soliton and first-order rogue wave are obtained by the long wave limit in multi-solitons. The dynamics of the first-order rogue wave, second-order rogue wave and interaction between one-soliton and first-order rogue wave are presented by selecting the appropriate parameters. In particular parameters, the positions and the maximum of amplitude of rogue wave can be confirmed by the detail calculations.PACS numbers: 02.30.Ik, 05.45.Yv.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Zhonglong Zhao ◽  
Lingchao He ◽  
Yubin Gao

In this paper, the bilinear method is employed to investigate the rogue wave solutions and the rogue type multiple lump wave solutions of the (2+1)-dimensional Benjamin-Ono equation. Two theorems for constructing rogue wave solutions are proposed with the aid of a variable transformation. Four kinds of rogue wave solutions are obtained by means of Theorem 1. In Theorem 2, three polynomial functions are used to derive multiple lump wave solutions. The 3-lump solutions, 6-lump solutions, and 8-lump solutions are presented, respectively. The 3-lump wave has a “triangular” structure. The centers of the 6-lump wave form a pentagram around a single lump wave. The 8-lump wave consists of a set of seven first order rogue waves and one second order rogue wave as the center. The multiple lump wave develops into low order rogue wave as parameters decline to zero. The method presented in this paper provides a uniform method for investigating high order rational solutions. All the results are useful in explaining high dimensional dynamical phenomena of the (2+1)-dimensional Benjamin-Ono equation.


Author(s):  
Wei Tan ◽  
Zhao-Yang Yin

Abstract The parameter limit method on the basis of Hirota’s bilinear method is proposed to construct the rogue wave solutions for nonlinear partial differential equations (NLPDEs). Some real and complex differential equations are used as concrete examples to illustrate the effectiveness and correctness of the described method. The rogue waves and homoclinic solutions of different structures are obtained and simulated by three-dimensional graphics, respectively. More importantly, we find that rogue wave solutions and homoclinic solutions appear in pairs. That is to say, for some NLPDEs, if there is a homoclinic solution, then there must be a rogue wave solution. The twin phenomenon of rogue wave solutions and homoclinic solutions of a class of NLPDEs is discussed.


2021 ◽  
pp. 2150313
Author(s):  
Jian-Ping Yu ◽  
Wen-Xiu Ma ◽  
Chaudry Masood Khalique ◽  
Yong-Li Sun

In this research, we will introduce and study the localized interaction solutions and th eir dynamics of the extended Hirota–Satsuma–Ito equation (HSIe), which plays a key role in studying certain complex physical phenomena. By using the Hirota bilinear method, the lump-type solutions will be firstly constructed, which are almost rationally localized in all spatial directions. Then, three kinds of localized interaction solutions will be obtained, respectively. In order to study the dynamic behaviors, numerical simulations are performed. Two interesting physical phenomena are found: one is the fission and fusion phenomena happening during the procedure of their collisions; the other is the rogue wave phenomena triggered by the interaction between a lump-type wave and a soliton wave.


2020 ◽  
Vol 34 (12) ◽  
pp. 2050117 ◽  
Author(s):  
Xianglong Tang ◽  
Yong Chen

Utilizing the Hirota bilinear method, the lump solutions, the interaction solutions with the lump and the stripe solitons, the breathers and the rogue waves for a (3[Formula: see text]+[Formula: see text]1)-dimensional Kudryashov–Sinelshchikov equation are constructed. Two types of interaction solutions between the lumps and the stripe solitons are exhibited. Some different breathers are given by choosing special parameters in the expressions of the solitons. Through a long wave limit of breathers, the lumps and rogue waves are derived.


2017 ◽  
Vol 72 (4) ◽  
pp. 307-314 ◽  
Author(s):  
Ji-Guang Rao ◽  
Yao-Bin Liu ◽  
Chao Qian ◽  
Jing-Song He

AbstractThe rational and semirational solutions in the Boussinesq equation are obtained by the Hirota bilinear method and long wave limit. It is shown that the rational solutions contain dark and bright rogue waves, and their typical dynamics are analysed and illustrated. The semirational solutions possess a range of hybrid solutions, and the hybrid of rogue wave and solitons are demonstrated in detail by the three-dimensional figures. Under certain parameter conditions, a new kind of semirational solutions consisted of rogue waves, breathers and solitons is discovered, which describes the dynamics of the rogue waves interacting with the breathers and solitons at the same time.


2021 ◽  
Vol 6 (10) ◽  
pp. 11046-11075
Author(s):  
Wen-Xin Zhang ◽  
◽  
Yaqing Liu

<abstract><p>In this paper, the reverse space cmKdV equation, the reverse time cmKdV equation and the reverse space-time cmKdV equation are constructed and each of three types diverse soliton solutions is derived based on the Hirota bilinear method. The Lax integrability of three types of nonlocal equations is studied from local equation by using variable transformations. Based on exact solution formulae of one- and two-soliton solutions of three types of nonlocal cmKdV equation, some figures are used to describe the soliton solutions. According to the dynamical behaviors, it can be found that these solutions possess novel properties which are different from the ones of classical cmKdV equation.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document