High-order breathers and semi-rational solutions of the (2+1)-dimensional Yu–Toda–Sasa–Fukuyama equation

2021 ◽  
pp. 2150422
Author(s):  
Mengqi Zheng ◽  
Maohua Li

In this paper, based on the Hirota bilinear method, the high-order breathers and interaction solutions between solitons and breathers of the (2+1)-dimensional Yu–Toda–Sasa–Fukuyama equation are investigated. The lump and semi-rational solutions are obtained by applying the long wave limit of the [Formula: see text]-soliton solution. Two types of semi-rational solutions are derived by choosing specific parameters, which are the mixture of the lump solution and solitons, and the mixture of the lump solution and breathers. Furthermore, the time evolution diagram illustrate the dynamic behavior of these solutions.

2020 ◽  
Vol 34 (12) ◽  
pp. 2050117 ◽  
Author(s):  
Xianglong Tang ◽  
Yong Chen

Utilizing the Hirota bilinear method, the lump solutions, the interaction solutions with the lump and the stripe solitons, the breathers and the rogue waves for a (3[Formula: see text]+[Formula: see text]1)-dimensional Kudryashov–Sinelshchikov equation are constructed. Two types of interaction solutions between the lumps and the stripe solitons are exhibited. Some different breathers are given by choosing special parameters in the expressions of the solitons. Through a long wave limit of breathers, the lumps and rogue waves are derived.


2020 ◽  
pp. 2150041
Author(s):  
Xi Ma ◽  
Tie-Cheng Xia ◽  
Handong Guo

In this paper, we use the Hirota bilinear method to find the [Formula: see text]-soliton solution of a [Formula: see text]-dimensional generalized Kadovtsev–Petviashvili (KP) equation. Then, we obtain the [Formula: see text]-order breathers of the equation, and combine the long-wave limit method to give the [Formula: see text]-order lumps. Resorting to the extended homoclinic test technique, we obtain the breather-kink solutions for the equation. Last, the interaction solution composed of the [Formula: see text]-soliton solution, [Formula: see text]-breathers, and [Formula: see text]-lumps for the [Formula: see text]-dimensional generalized KP equation is constructed.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Yong Zhang ◽  
Shili Sun ◽  
Huanhe Dong

The rational solutions, semirational solutions, and their interactions to the (3+1)-dimensional Jimbo-Miwa equation are obtained by the Hirota bilinear method and long wave limit. The hybrid solutions contain rogue wave, lump solution, and the breather solution, in which the breathers which are manifested as growing and decaying periodic line waves show different dynamics in different planes. Rogue waves are localized in time and are obtained theoretically as a long wave limit of breathers with indefinitely larger periods; they arise from a constant background at t≪0 and then disappear in the constant background when time goes on. More importantly, the interactions between some hybrid solutions are demonstrated in detail by the three-dimensional figures, such as hybrid solution between the stripe soliton and breather and hybrid solution between stripe soliton and lump solution.


Author(s):  
Na Liu ◽  
Xinhua Tang ◽  
Weiwei Zhang

This paper is devoted to obtaining the multi-soliton solutions, high-order breather solutions and high-order rational solutions of the (3+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation by applying the Hirota bilinear method and the long-wave limit approach. Moreover, the interaction solutions are constructed by choosing appropriate value of parameters, which consist of four waves for lumps, breathers, rouges and solitons. Some dynamical characteristics for the obtained exact solutions are illustrated using figures.


Author(s):  
Shuxin Yang ◽  
Zhao Zhang ◽  
Biao Li

On the basis of the Hirota bilinear method, resonance Y-shaped soliton and its interaction with other localized waves of (2+1)-dimensional bidirectional Sawada–Kotera equation are derived by introducing the constraint conditions. These types of mixed soliton solutions exhibit complex interaction phenomenon between the resonance Y-shaped solitons and line waves, breather waves, and high-order lump waves. The dynamic behaviors of the interaction solutions are analyzed and illustrated.


2017 ◽  
Vol 72 (4) ◽  
pp. 307-314 ◽  
Author(s):  
Ji-Guang Rao ◽  
Yao-Bin Liu ◽  
Chao Qian ◽  
Jing-Song He

AbstractThe rational and semirational solutions in the Boussinesq equation are obtained by the Hirota bilinear method and long wave limit. It is shown that the rational solutions contain dark and bright rogue waves, and their typical dynamics are analysed and illustrated. The semirational solutions possess a range of hybrid solutions, and the hybrid of rogue wave and solitons are demonstrated in detail by the three-dimensional figures. Under certain parameter conditions, a new kind of semirational solutions consisted of rogue waves, breathers and solitons is discovered, which describes the dynamics of the rogue waves interacting with the breathers and solitons at the same time.


2019 ◽  
Vol 33 (16) ◽  
pp. 1950174 ◽  
Author(s):  
Jian-Hong Zhuang ◽  
Yaqing Liu ◽  
Xin Chen ◽  
Juan-Juan Wu ◽  
Xiao-Yong Wen

In this paper, the (2[Formula: see text]+[Formula: see text]1)-dimensional CDGKS equation is studied and its diverse soliton solutions consisting of line soliton, periodic soliton and lump soliton with different parameters are derived based on the Hirota bilinear method and long-wave limit method. Based on exact solution formulae with different parameters, the interaction between line soliton and periodic soliton, the interaction between line soliton and lump soliton, as well as the interaction between periodic soliton and lump soliton are illustrated. According to the dynamical behaviors, it can be found that the effects of different parameters are on the propagation direction and shapes. Novel soliton interaction phenomena are also observed.


2019 ◽  
Vol 23 (4) ◽  
pp. 2437-2445 ◽  
Author(s):  
Xiaoqing Gao ◽  
Sudao Bilige ◽  
Jianqing Lü ◽  
Yuexing Bai ◽  
Runfa Zhang ◽  
...  

In this paper, abundant lump solutions and two types of interaction solutions of the (3+1)-D Kadomtsev-Petviashvili equation are obtained by the Hirota bilinear method. Some contour plots with different determinant values are sequentially given to show that the corresponding lump solution tends to zero when the deter-minant approaches to zero. The interaction solutions with special parameters are plotted to elucidate the solution properties.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Xiaomin Wang ◽  
Sudao Bilige ◽  
Jing Pang

In this paper, we gave a form of rational solution and their interaction solution to a nonlinear evolution equation. The rational solution contained lump solution, general lump solution, high-order lump solution, lump-type solution, etc. Their interaction solution contained the classical interaction solution, such as the lump-kink solution and the lump-soliton solution. As the example, by using the generalized bilinear method and symbolic computation Maple, we obtained abundant high-order lump-type solutions and their interaction solutions between lumps and other function solutions under certain constraints of the (3+1)-dimensional Jimbo-Miwa equation. Via three-dimensional plots, contour plots and density plots with the help of Maple, the physical characteristics and structures of these waves are described very well. These solutions have greatly enriched the exact solutions of the (3+1)-dimensional Jimbo-Miwa equation on the existing literature.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hongcai Ma ◽  
Qiaoxin Cheng ◽  
Aiping Deng

In this paper, a generalized (2 + 1)-dimensional Calogero–Bogoyavlenskii–Schiff equation is considered. Based on the Hirota bilinear method, three kinds of exact solutions, soliton solution, breather solutions, and lump solutions, are obtained. Breathers can be obtained by choosing suitable parameters on the 2-soliton solution, and lump solutions are constructed via the long wave limit method. Figures are given out to reveal the dynamic characteristics on the presented solutions. Results obtained in this work may be conducive to understanding the propagation of localized waves.


Sign in / Sign up

Export Citation Format

Share Document