Multiple breathers and high-order rational solutions of the (3+1)-dimensional B-type Kadomtsev–Petviashvili equation

Author(s):  
Na Liu ◽  
Xinhua Tang ◽  
Weiwei Zhang

This paper is devoted to obtaining the multi-soliton solutions, high-order breather solutions and high-order rational solutions of the (3+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation by applying the Hirota bilinear method and the long-wave limit approach. Moreover, the interaction solutions are constructed by choosing appropriate value of parameters, which consist of four waves for lumps, breathers, rouges and solitons. Some dynamical characteristics for the obtained exact solutions are illustrated using figures.

2021 ◽  
pp. 2150422
Author(s):  
Mengqi Zheng ◽  
Maohua Li

In this paper, based on the Hirota bilinear method, the high-order breathers and interaction solutions between solitons and breathers of the (2+1)-dimensional Yu–Toda–Sasa–Fukuyama equation are investigated. The lump and semi-rational solutions are obtained by applying the long wave limit of the [Formula: see text]-soliton solution. Two types of semi-rational solutions are derived by choosing specific parameters, which are the mixture of the lump solution and solitons, and the mixture of the lump solution and breathers. Furthermore, the time evolution diagram illustrate the dynamic behavior of these solutions.


Author(s):  
Shuxin Yang ◽  
Zhao Zhang ◽  
Biao Li

On the basis of the Hirota bilinear method, resonance Y-shaped soliton and its interaction with other localized waves of (2+1)-dimensional bidirectional Sawada–Kotera equation are derived by introducing the constraint conditions. These types of mixed soliton solutions exhibit complex interaction phenomenon between the resonance Y-shaped solitons and line waves, breather waves, and high-order lump waves. The dynamic behaviors of the interaction solutions are analyzed and illustrated.


2021 ◽  
pp. 2150388
Author(s):  
Hongcai Ma ◽  
Huaiyu Huang ◽  
Aiping Deng

In recent years, soliton molecules have received reinvigorating scientific interests in physics and other fields. Soliton molecules have been successfully found in optical experiments. In this paper, we attribute the solutions of the (3+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation by employing the bilinear method. Based on the [Formula: see text]-soliton solutions, we establish the soliton molecules, asymmetric solitons and some novel hybrid solutions of this equation by means of the velocity resonance mechanism and the long wave limit method. Finally, we give dynamic graphs of soliton molecules, asymmetric solitons and some novel hybrid solutions.


2019 ◽  
Vol 33 (16) ◽  
pp. 1950174 ◽  
Author(s):  
Jian-Hong Zhuang ◽  
Yaqing Liu ◽  
Xin Chen ◽  
Juan-Juan Wu ◽  
Xiao-Yong Wen

In this paper, the (2[Formula: see text]+[Formula: see text]1)-dimensional CDGKS equation is studied and its diverse soliton solutions consisting of line soliton, periodic soliton and lump soliton with different parameters are derived based on the Hirota bilinear method and long-wave limit method. Based on exact solution formulae with different parameters, the interaction between line soliton and periodic soliton, the interaction between line soliton and lump soliton, as well as the interaction between periodic soliton and lump soliton are illustrated. According to the dynamical behaviors, it can be found that the effects of different parameters are on the propagation direction and shapes. Novel soliton interaction phenomena are also observed.


2020 ◽  
pp. 2150041
Author(s):  
Xi Ma ◽  
Tie-Cheng Xia ◽  
Handong Guo

In this paper, we use the Hirota bilinear method to find the [Formula: see text]-soliton solution of a [Formula: see text]-dimensional generalized Kadovtsev–Petviashvili (KP) equation. Then, we obtain the [Formula: see text]-order breathers of the equation, and combine the long-wave limit method to give the [Formula: see text]-order lumps. Resorting to the extended homoclinic test technique, we obtain the breather-kink solutions for the equation. Last, the interaction solution composed of the [Formula: see text]-soliton solution, [Formula: see text]-breathers, and [Formula: see text]-lumps for the [Formula: see text]-dimensional generalized KP equation is constructed.


2020 ◽  
Vol 34 (12) ◽  
pp. 2050117 ◽  
Author(s):  
Xianglong Tang ◽  
Yong Chen

Utilizing the Hirota bilinear method, the lump solutions, the interaction solutions with the lump and the stripe solitons, the breathers and the rogue waves for a (3[Formula: see text]+[Formula: see text]1)-dimensional Kudryashov–Sinelshchikov equation are constructed. Two types of interaction solutions between the lumps and the stripe solitons are exhibited. Some different breathers are given by choosing special parameters in the expressions of the solitons. Through a long wave limit of breathers, the lumps and rogue waves are derived.


2018 ◽  
Vol 32 (29) ◽  
pp. 1850359 ◽  
Author(s):  
Wenhao Liu ◽  
Yufeng Zhang

In this paper, the traveling wave method is employed to investigate the one-soliton solutions to two different types of bright solutions for the generalized (3[Formula: see text]+[Formula: see text]1)-dimensional nonlinear-wave equation, primarily. In the following parts, we derive the breathers and rational solutions by using the Hirota bilinear method and long-wave limit. More specifically, we discuss the lump solution and rogue wave solution, in which their trajectory will be changed by varying the corresponding coefficient or coordinate axis. On the one hand, the breathers express the form of periodic line waves in different planes, on the other hand, rogue waves are localized in time.


2020 ◽  
Vol 34 (07) ◽  
pp. 2050053
Author(s):  
Min Gao ◽  
Hai-Qiang Zhang

In this paper, we investigate a [Formula: see text]-dimensional B-type Kadomtsev-Petviashvili (BKP) equation, which is a generalization of the [Formula: see text]-dimensional equation. Based on the Hirota bilinear method and the limit technique of long wave, we systematically construct a family of exact solutions of BKP equation including the [Formula: see text]-solitary wave solution, lump solution as well as interaction solution between lump waves and solitary waves.


2020 ◽  
Vol 34 (06) ◽  
pp. 2050076 ◽  
Author(s):  
Han-Dong Guo ◽  
Tie-Cheng Xia ◽  
Wen-Xiu Ma

In this paper, an extended (3[Formula: see text]+[Formula: see text]1)-dimensional Kadomtsev–Petviashvili (KP) equation is studied via the Hirota bilinear derivative method. Soliton, breather, lump and rogue waves, which are four types of localized waves, are obtained. N-soliton solution is derived by employing bilinear method. Then, line or general breathers, two-order line or general breathers, interaction solutions between soliton and line or general breathers are constructed by complex conjugate approach. These breathers own different dynamic behaviors in different planes. Taking the long wave limit method on the multi-soliton solutions under special parameter constraints, lumps, two- and three-lump and interaction solutions between dark soliton and dark lump are constructed, respectively. Finally, dark rogue waves, dark two-order rogue waves and related interaction solutions between dark soliton and dark rogue waves or dark lump are also demonstrated. Moreover, dynamical characteristics of these localized waves and interaction solutions are further vividly demonstrated through lots of three-dimensional graphs.


2020 ◽  
pp. 2150057
Author(s):  
Xin-Mei Zhou ◽  
Shou-Fu Tian ◽  
Ling-Di Zhang ◽  
Tian-Tian Zhang

In this work, we investigate the (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko (gBK) equation. Based on its bilinear form, the [Formula: see text]th-order breather solutions of the gBK equation are successful given by taking appropriate parameters. Furthermore, the [Formula: see text]th-order lump solutions of the gBK equation are obtained via the long-wave limit method. In addition, the semi-rational solutions are generated to reveal the interaction between lump solutions, soliton solutions, and breather solutions.


Sign in / Sign up

Export Citation Format

Share Document