OBJECT MOTION DETECTION AND TRACKING BY AN ARTIFICIAL INTELLIGENCE APPROACH

Author(s):  
LUCIA MADDALENA ◽  
ALFREDO PETROSINO ◽  
ALESSIO FERONE

The aim of this paper is to propose an artificial intelligence based approach to moving object detection and tracking. Specifically, we adopt an approach to moving object detection based on self organization through artificial neural networks. Such approach allows to handle scenes containing moving backgrounds and gradual illumination variations, and achieves robust detection for different types of videos taken with stationary cameras. Moreover, for object tracking we propose a suitable conjunction between Kalman filtering, properly instanced for the problem at hand, and a matching model belonging to the class of Multiple Hypothesis Testing. To assess the validity of our approach, we experimented both proposed moving object detection and object tracking over different color video sequences that represent typical situations critical for video surveillance systems.

With the advent in technology, security and authentication has become the main aspect in computer vision approach. Moving object detection is an efficient system with the goal of preserving the perceptible and principal source in a group. Surveillance is one of the most crucial requirements and carried out to monitor various kinds of activities. The detection and tracking of moving objects are the fundamental concept that comes under the surveillance systems. Moving object recognition is challenging approach in the field of digital image processing. Moving object detection relies on few of the applications which are Human Machine Interaction (HMI), Safety and video Surveillance, Augmented Realism, Transportation Monitoring on Roads, Medical Imaging etc. The main goal of this research is the detection and tracking moving object. In proposed approach, based on the pre-processing method in which there is extraction of the frames with reduction of dimension. It applies the morphological methods to clean the foreground image in the moving objects and texture based feature extract using component analysis method. After that, design a novel method which is optimized multilayer perceptron neural network. It used the optimized layers based on the Pbest and Gbest particle position in the objects. It finds the fitness values which is binary values (x_update, y_update) of swarm or object positions. Method and output achieved final frame creation of the moving objects in the video using BLOB ANALYSER In this research , an application is designed using MATLAB VERSION 2016a In activation function to re-filter the given input and final output calculated with the help of pre-defined sigmoid. In proposed methods to find the clear detection and tracking in the given dataset MOT, FOOTBALL, INDOOR and OUTDOOR datasets. To improve the detection accuracy rate, recall rate and reduce the error rates, False Positive and Negative rate and compare with the various classifiers such as KNN, MLPNN and J48 decision Tree.


Author(s):  
Naveenkumar M ◽  
Sriharsha K. V. ◽  
Vadivel A

This chapter presents a novel approach for moving object detection and tracking based on contour extraction and centroid representation (CECR). Firstly, two consecutive frames are read from the video, and they are converted into grayscale. Next, the absolute difference is calculated between them and the result frame is converted into binary by applying gray threshold technique. The binary frame is segmented using contour extraction algorithm. The centroid representation is used for motion tracking. In the second stage of experiment, initially object is detected by using CECR and motion of each track is estimated by Kalman filter. Experimental results show that the proposed method can robustly detect and track the moving object.


Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 34 ◽  
Author(s):  
Jisang Yoo ◽  
Gyu-cheol Lee

Moving object detection task can be solved by the background subtraction algorithm if the camera is fixed. However, because the background moves, detecting moving objects in a moving car is a difficult problem. There were attempts to detect moving objects using LiDAR or stereo cameras, but when the car moved, the detection rate decreased. We propose a moving object detection algorithm using an object motion reflection model of motion vectors. The proposed method first obtains the disparity map by searching the corresponding region between stereo images. Then, we estimate road by applying v-disparity method to the disparity map. The optical flow is used to acquire the motion vectors of symmetric pixels between adjacent frames where the road has been removed. We designed a probability model of how much the local motion is reflected in the motion vector to determine if the object is moving. We have experimented with the proposed method on two datasets, and confirmed that the proposed method detects moving objects with higher accuracy than other methods.


Sign in / Sign up

Export Citation Format

Share Document